Piccolo-II Sonomètre Intégrateur Moyenneur

Manuel de l'utilisateur - 2024-06

Soft dB Inc. 1040, Belvedere Avenue, Suite 215 Quebec (Quebec) Canada G1S 3G3 Toll free: 1-866-686-0993 (USA and Canada) E-mail: <u>info@softdb.com</u>

Contents

1	Intro	oductio	n	1
	1.1	Foncti	ionnalités	1
2	Pren	nière Ut	tilisation	2
	2.1	Débal	lage	2
	2.2	Descri	iption de l'instrument	2
	2.3	Dimer	nsions	3
	2.4	Bouto	ns	3
	2.5	Affich	age	4
	2.6	Indica	teur de Surcharge	5
	2.7	Mise e	en Marche	5
	2.8	Mise e	en Veille	5
3	Effe	tuer ur	ne Mesure	6
	3.1	Mesur	e Unique « Single-Store »	6
	3.2	Mesur	es Enchainées « Auto-Store »	7
4	Affic	hage		8
5	Men	u de Co	nfiguration	9
6	Effe	tuer la	Calibration	. 10
7	Verr	ouiller	les Boutons	.11
8	Logi	ciel		.12
	8.1	Téléch	nargement et Installation	12
	8.2	Modu	les Logiciels	12
	8.3	Logiciel Utility		
		8.3.1	Téléchargement des Mesures	14
		8.3.2	Utilitaire de Calibration	14
		8.3.3	Certificat de Calibration	14
		8.3.4	Synchronisation de l'Horloge	15
	8.4	Logici	el Data Analyzer	16
		8.4.1	Troncage des Données	17
		8.4.2	Recalcul d'Intervalles	18

– Soft dB –

		8.4.3 Calc	ul de Dose	18
	8.5	Logiciel Spe	ectrum Analyzer	19
	8.6	Logiciel Au	dio Recorder	20
9	Spéc	fications Te	chniques	21
10	Effec	tuer une Me	sure en Conformité avec IEC 61672-3	23
	10.1	Niveau de p	ression acoustique de référence	23
	10.2	Gamme dyı	namique de référence	23
	10.3	Corrections	à utiliser pendant les essais périodiques	23
		10.3.1 Rép	onse en champ libre et en pression	23
		10.3.2 Rép	onse directionnelle	24
		10.3.3 Effe	de l'écran anti-vent	25
	10.4	Bornes supe	érieure et inférieure de linéarité	25
		10.4.1 Borr	ne supérieure de linéarité de la gamme dynamique « Low »	25
		10.4.2 Borr	ne supérieure de linéarité de la gamme dynamique « High »	26
		10.4.3 Borr	ne inférieure de linéarité de la gamme dynamique « Low »	26
		10.4.4 Borr	ne inférieure de linéarité de la gamme dynamique « High »	26
		10.4.5 Nive	aux de départ pour les essais de linéarité	26
	10.5	Essais élect	iques	27
		10.5.1 Inje	tion de Signaux Électriques	27
		10.5.2 Ajus	tements aux Spécifications	27
		10.5.3 Cali	pration	27
		10.5.4 Ajus	tement de la Sensibilité de l'Entrée Auxiliaire	27
	10.6	Bruit propre		28
		10.6.1 Brui	t propre total (acoustique et électrique)	28
		10.6.2 Brui	t propre électrique	28
11	Gloss	aire		
12	Certi	ficat de Cali	bration Typique	
13	FAQ.	••••••		
14	Gara	ntie		

1 Introduction

Félicitations pour l'acquisition de votre sonomètre intégrateur Piccolo-II. Cet appareil fournit une solution avant-gardiste à faible cout pour des mesures acoustiques de grade professionnel.

1.1 Fonctionnalités

- Sonomètre intégrateur de précision;
- Mesures simultanées des pondérations fréquentielles A, C et Z;
- Leq, Lmax, Lmin, Lpeak, SEL,
- 10 Percentiles (L1%, L2%, L5%, L8%, L10%, L25%, L50%, L90%, L95% and L99%);
- Gamme dynamique étendue: 30 dBA to 130 dBZpk¹;
- Réponse temporelle Slow ou Fast;
- Spectre 1/1 Octave;
- Spectre 1/3 Octave²;
- Spectre FFT de 400 lignes;
- Mémoire interne de 16 MB pouvant enregistrer jusqu'à 198,948 mesures;
- Entrée auxiliaire pour microphone externe;
- Batterie Li-Ion haute capacité pour une durée d'opération de 48h.

¹ La gamme dynamique totale est répartie sur deux plages: Low : 30 dBA à 110 dBZpk, High : 46 dBA à 130 dBZpk, pour une sensibilité nominale

² Le spectre 1/3 octave nécessite l'utilisation du logiciel

2 Première Utilisation

2.1 Déballage

2.2 Description de l'instrument

2.4 Boutons

Le Piccolo-II offre trois boutons pour le contrôler. Les icones affichés en haut de chaque bouton indiquent les fonctions associées à une pression longue (tenir enfoncer) et les icones affichées en dessous des boutons indiquent les fonctions associées à une pression courte sur le bouton.

Fonctions "Pression Longue" Menu de configuration Démarrage/arrêt de mesures "Enchaînées" Mise en marche / Mise en seille

Fonctions "Pression Courtes" Modifier l'affichage Démarrage/arrêt de mesure "Unique" Sélection des paramètres

2.5 Affichage

- 1) Niveau de batterie (le contour clignote lors de la recharge)
- 2) Étiquette du niveau sonore SPL Maximum
- 3) Étiquette du niveau sonore SPL Minimum
- 4) Indicateur de mesure en cours (clignote)
- 5) Étiquette du niveau sonore équivalent (Leq)
- 6) Indicateur en rampe du niveau sonore SPL instantané (Le segment le plus à gauche clignote lors d'un niveau trop bas (Under-Range) et le segment le plus à droite clignote lors d'une surcharge (Over-Range))
- 7) Étiquette de pondération temporelle du niveau sonore SPL (Fast ou Slow)
- 8) Étiquette des unités en décibel (dB)
- 9) Étiquette de pondération fréquentielle (A, C ou Z)
- 10) Indicateur de valeur numérique :
 - Niveau Sonore (Leq, SPL, Lmax, Lmin, SEL, Lpeak);
 - Numéro de mesure;
 - Durée de mesure (mm:ss);
 - Surcharge et Bas-Niveau (- or 1);
 - Pourcentage de batterie (%).
- 11) Étiquette de données additionnelles :
 - SPL, Niveau sonore SPL instantané;
 - SEL, Niveau d'exposition sonore;
 - PEA, Niveau sonore de crête maximum Lpeak;
 - rEC, Numéro de mesure;
 - bAtt, Pourcentage batterie;
 - u O, Bas-Niveau et Surcharge;
- 12) Étiquette de durée de la mesure.

2.6 Indicateur de Surcharge

La DEL d'indication de surcharge va s'allumer pour une durée de 1s si une surcharge survient. Une surcharge est un niveau sonore supérieur à la limite de mesure du sonomètre.

Si une surcharge survient lors d'une mesure, le segment le plus à droite de l'indicateur en rampe clignotera. Ce segment continuera de clignoter tant qu'une nouvelle mesure ne sera pas démarrée.

Le niveau d'indicateur de surcharge est ajusté à 1 dB sous la limite supérieure de la gamme de la gamme dynamique.

2.7 Mise en Marche

Tenez le bouton de droite enfoncé pour démarrer le sonomètre. Durant le démarrage, l'affichage indiquera « Init », puis To power ON the instrument, press and hold the right-most button. At power-up, the display screen displays the live SPL.

Tenez le bouton de droite enfoncé pour démarrer le sonomètre. Le sonomètre affiche « Init » durant le démarrage qui dure environ 1s. Suivant le démarrage, le sonomètre affichera le niveau sonore SPL instantané.

2.8 Mise en Veille

Pour éteindre le sonomètre, tenez le bouton de droite enfoncé jusqu'à ce que l'écran soit éteint.

Si aucune mesure n'est en cours, le sonomètre éteindra automatiquement après 10 minutes d'inactivité.

3 Effectuer une Mesure

Deux modes de mesure sont disponibles sur le Piccolo-II :

Le mode de mesure unique « Single-Store » effectue une mesure acoustique et arrête la mesure après une durée déterminée ou si l'utilisateur arrête manuellement la mesure.

Le mode de mesures enchainées « Auto-Store » effectue une série de mesures acoustique les unes après les autres. La série de mesure s'arrêtera si l'utilisateur arrête manuellement la mesure ou si la mémoire du sonomètre est pleine.

3.1 Mesure Unique « Single-Store »

Appuyez sur le bouton du centre pour démarrer une mesure unique. Lors du démarrage de la mesure, l'affichage indiquera « run SGLE » pendant 1s.

Une fois que la mesure est démarrée, l'affichage indique le niveau sonore équivalent de la mesure en cours.

Pendant que la mesure est en cours, l'indicateur de mesure « Avg » clignote et les segments alphanumériques de gauche effectuent une rotation.

Notez que les segments forment un « o » minuscule pour une mesure unique par rapport au « O » majuscule indiquant des mesures enchaînées.

Pour arrêter la mesure, appuyez sur le bouton du centre ou attendez que la durée de mesure prédéterminée soit complétée.

Une fois la mesure complétée, l'affichage indique le numéro de mesure effectuée pendant 1s et retourne à l'affichage du niveau sonore équivalent (Leq).

3.2 Mesures Enchainées « Auto-Store »

Appuyez et tenez le bouton du centre pour démarrer des mesures enchaînées. Lors du démarrage de la mesure, l'affichage indiquera « run AUto » pendant 1s.

Une fois que la mesure est démarrée, l'affichage indique le niveau sonore équivalent de la mesure en cours.

Pendant que la mesure est en cours, l'indicateur de mesure « Avg » clignote et les segments alphanumériques de gauche effectuent une rotation. Notez que les segments forment un « O » majuscule indiquant des mesures enchaînées par rapport au « o » minuscule pour une mesure unique.

Pour arrêter la série de mesures, appuyez sur le bouton du centre Une fois la mesure complétée, l'affichage indique le numéro de mesure effectuée pendant 1s et retourne à l'affichage du niveau sonore équivalent (Leq).

4 Affichage

Chaque affichage est accessible en appuyant sur le bouton de droite. Chaque pression du bouton affichera alternativement les informations suivantes :

5 Menu de Configuration

Le menu de configuration est accessible en tenant appuyé le bouton de gauche. Chaque pression longue sur ce bouton permet de naviguer entre les différents menus. Une pression courte sur le bouton de gauche permet de changer la valeur du menu de configuration. Pour quitter la configuration, cliquez sur le bouton du centre ou de droite ou attendez simplement pendant 10s.

Durée de Mesure : Permet de sélectionner une des durées de mesure prédéterminée (1s, 10s, 1m, 5m, 15m and 60m). Ces durées prédéterminées peuvent être modifiées en utilisant le logiciel.

Calibration : Permet de sélectionner le niveau de calibration (94 dB ou 114 dB). Tenez appuyé le bouton central pour initier le processus de calibration. Référez à la section 6, p. 10 pour plus d'information.

Gamme Dynamique : Permet de sélectionner la gamme dynamique Basse (L) ou élevée (H). Référez aux spécifications techniques à la section 9, p. 21 pour plus d'information.

Pondération Fréquentielle : Permet de sélectionner la pondération fréquentielle d'affichage entre "A", "C" ou "Z". Notez que les trois pondérations fréquentielles sont toujours enregistrées malgré ce paramètre. La seule exception concerne les percentiles (LN%) qui sont enregistrées uniquement pour la pondération fréquentielle sélectionnée.

Pondération Temporelle : Permet de sélectionner la pondération temporelle des niveaux sonores exponentiels SPL entre « Fast » et « Slow ».

Mode FFT: Permet de sélectionner le mode du spectre FFT entre : "OFF", "Full", "8000", "4000", "2000", "1000", and "500". Le spectre FFT offre une résolution de 400 lignes sur une bande de fréquence de 17.2kHz (mode Full). La bande de fréquence peut être réduite en utilisant les modes 8000 à 500 pour obtenir une meilleure résolution fréquentielle.

6 Effectuer la Calibration

- 1) Tenez enfoncé le bouton de gauche pour accéder au menu de configuration;
- 2) Tenez enfoncé le bouton de gauche à nouveau pour atteindre le menu de calibration;
- 3) Appuyez sur le bouton de gauche pour sélectionner le niveau de calibration (94dB ou 114dB) conformément au niveau de référence du calibrateur employé;

- 4) Insérer le microphone dans la chambre de calibration du calibrateur¹;
- 5) Activez le calibrateur;
- 6) Tenez enfoncé le bouton du centre pour initier le processus de calibration;
- 7) Le processus de calibration dure 5s. Durant cette période, l'affichage affiche le niveau sonore SPL et l'étiquette « Avg » clignote;

8) Lorsque la calibration est terminée l'affichage indique « done » si la calibration s'est effectuée correctement ou « Err » si une erreur est survenue.

Une erreur survient si le résultat de la calibration est en dehors des spécifications. Ceci peut survenir si le calibrateur n'est pas en marche ou si le niveau de calibration sélectionné (94dB ou 114dB) ne correspond pas au niveau de référence du calibrateur. Aussi, cet indicateur peut indiquer une défectuosité du sonomètre.

Notez que si un signal externe est utilisé dans l'entrée jack, l'entrée auxiliaire sera calibrée. Cette opération n'affectera pas la sensibilité du microphone principal.

Le processus de calibration peut aussi être effectué en utilisant le logiciel. Référez à la section 8.3.2 pour plus d'information.

¹ Le calibrateur employé doit être conforme à la norme IEC 60942.

– Soft dB

7 Verrouiller les Boutons

Pour verrouiller ou déverrouiller les boutons du Piccolo-II, tenez enfoncé les 3 boutons simultanément. Lorsque le Piccolo-II est verrouillé ou déverrouillé, l'affichage indique les messages suivants :

Verrouillé « Locked »

Déverrouillé « Unlocked »

8 Logiciel

8.1 Téléchargement et Installation

Utilisez le lien suivant pour télécharger le logiciel :

www.softdb.com/software.php?piccolo-2

Confic	uration	Minimale	
COINIC	juiuuon	iviii iliina c	

	Spécification Minimale
Système d'exploitation	Windows 7 SP1
CPU	Dual-Core,1.2 GHz
Mémoire	2 GB RAM
Disque dur	300 MB d'espace disque libre
Port	USB 2.0
Résolution d'affichage	800 x 600

8.2 Modules Logiciels

Les modules logiciels inclus dans l'installateur du logiciel Piccolo-II accessibles par le menu démarrer sont les suivants :

- Utility: Configurer le Piccolo-II et télécharger les mesures (Section 8.3)
- Data Manager: Analyser les fichiers de mesure (Section 8.4**Error! Reference source not found.**)
- Spectrum Analyzer: Mesurer et analyser des mesures spectrales (Section 8.5)
- Audio Recorder: Enregistrer des fichiers audios en utilisant le Piccolo-II (Section 8.6)

8.3 Logiciel Utility

1) Sélectionnez « Piccolo-II Utility » dans le menu Démarrer.

2) Connectez un Piccolo-II sur l'ordinateur en utilisant le câble USB fourni. Lorsque le Piccolo-II est connecté, il devrait être automatiquement détecté par le logiciel.

La portion à gauche de l'interface affiche l'écran et les boutons du Piccolo-II. Cette section de l'interface se comporte exactement comme l'appareil physique : l'écran affiche les mêmes informations, les trois boutons du logiciel peuvent être utilisés de la même manière qu'avec les boutons physiques et la DEL de surcharge opère de la même manière.

La portion à droite de l'interface présente la configuration du Piccolo-II ainsi que des utilitaires.

8.3.1 Téléchargement des Mesures

- 1) Cliquez sur le bouton « load » pour télécharger les mesures enregistrées sur l'appareil;
- 2) Une fois le téléchargement complété, le logiciel affichera une interface permettant d'enregistrer le fichier *.pic2 sur l'ordinateur.
- 3) Une fois le fichier de mesure enregistré, et le logiciel « Data Analyzer » est lancé pour visualiser les données.

8.3.2 Utilitaire de Calibration

- 1) Cliquez sur le bouton « Calibration » dans l'interface principale pour lancer l'utilitaire de calibration;
- 2) Insérez le microphone dans la chambre de calibration du calibrateur¹;
- 3) Entrez le niveau sonore ainsi que la fréquence de référence du calibrateur;
- 4) Mettez le calibrateur en fonction;
- 5) Cliquez sur le bouton « Start » pour initier le processus de calibration;
- 6) Après 5s, la mesure est arrêtée et la sensibilité du microphone est ajustée.

8.3.3 Certificat de Calibration

Cliquez sur le bouton « Certificate » pour visualiser le certificat de calibration effectué en usine du Piccolo-II:

¹ Le calibrateur employé doit être conforme à la norme IEC 60942.

Soft	d B
------	-----

Calibration Certifica	ate		×	Calibration Certifi	cate					>
Info			^	-10-			dE	A 36.0	40.0 P	ass
Certificate Number	P02QC2017111301			10	100	1000	20000			
Date	17/11/13									
Performed by	Technician Name			Section 12 - Acoust	ical signal tests	of frequency v	weightings			
Standard	ANSI/ASA S1.4-3 (2014) / IEC 61672-3 (2013) Elect	roacoustics - Sound Level Meters - Pa		6-						
Serial Number	P0216123199									- 1
Sensitivity	17.81mV/Pa			4-				-	-	
Class	2			· ∰ 2-						_
Atmospheric	23.0°C ; 101.325kPa ; 50.0%			5 0-						-
Summary		,		<u>ٿ</u> ۔2-			\sim			-
Test Description		Pass		-4-					\sim	_
Section 11.1 - Self-ge	enerated noise (Microphone)	Pass		-6-					<u> </u>	
Section 11.2 - Self-ge	enerated noise (Electrical input)	Pass		20	100		1000		10000	2000
Section 12 - Acoustic	cal signal tests of frequency weightings	Pass		Section 13 - Electri	al signal tests o	of frequency w	eightings			
Section 13 - Electrica	al signal tests of frequency weightings	Pass			,					
Section 14 - Frequen	icy and time weightings at 1 kHz	Pass		6-						
Section 15 - Long-te	rm stability	Pass		4-						_
Section 16 - Level lin	earity on the reference level range	Pass		~ 2-						
Section 17 - Level lin	earity including range control	Pass		8						
Section 18 - Tonebur	rst response	Pass		ē 0-						-
Section 19 - C-weigh	nted peak sound level	Pass		··· -2-				~		_
Section 20 - Overload indication Pass				-4-						_
Section 21 - High-level stability Pass				-6-		z Z	∼ ¢ 🔼 A 🗠			
Conformity Declarat	Conformity Declaration			20	100		1000		10000	2000
The sound level meter	er submitted for testing successfully completed the p	eriodic tests of ANSI/ASA S1.4-3		Section 14 - Freque	ency and time w	eightings at 1	kHz			

Chaque sonomètre Piccolo-II est calibré et certifié en usine selon les procédures conforme aux normes IEC 61672-3 (2013) / ANSI/ASA S1.4-3 (2014) Electroacoustics – Sound Level Meters – Part 3: Periodic Tests.

Une copie papier du certificat de calibration est inclue avec chaque sonomètre Piccolo-II et les données de certifications sont enregistrées dans la mémoire de l'appareil. Le sonomètre Piccolo-II peut être renvoyé à l'usine pour recertifier l'appareil et mettre à jour le certificat de calibration. Contactez <u>info@softdb.com</u> pour plus d'information.

Consultez la section 12 pour un certificat de calibration typique.

8.3.4 Synchronisation de l'Horloge

Cliquez sur le bouton 🙆 pour synchroniser l'horloge du Piccolo-II avec celle de l'ordinateur.

Si l'horloge du Piccolo-II indique un écart de plus de 10s avec celle de l'ordinateur, cette icone () sera affichée à côté du bouton de synchronisation.

8.4 Logiciel Data Analyzer

Le logiciel « Data Analyzer » permet d'analyser les mesures, de les sauvegarder dans un fichier et de les exporter dans un fichier texte compatible avec Excel.

L'interface principale affiche l'historique des mesures. Vous pouvez ajouter une courbe sur le graphique en cliquant sur « Add Data » dans le menu « Edit ».

Déplacez le curseur sur le graphique pour mettre à jour les données de la légende.

Utilisez les boutons « loupe » pour zoomer sur certaines portions du graphique. Alternativement vous pouvez zoomer en utilisant la roulette de la souris ou avec les touches flèche haut et bas du clavier. Il est aussi possible d'entrer une valeur spécifique sur les étiquettes minimum et maximum d'un axe du graphique pour ajuster précisément la portion visible du graphique.

Vous pouvez naviguer de droite à gauche dans le graphique d'historique en déplaçant la barre de défilement au bas du graphique ou en utilisant les touches flèche gauche et droite du clavier.

Cliquez sur « Show Details » dans le menu « View » pour afficher les détails d'une mesure spécifique. Ce volet affiche l'ensemble des valeurs enregistrées pour la mesure indiquée par le curseur. Déplacer le curseur dans le graphique d'historique mettra à jour ces informations automatiquement.

Cliquez sur « Records Table » dans le menu « View » pour afficher les mesures sous la forme d'une liste. Lorsque les mesures sont affichées sous la forme d'une liste, cliquez sur « History Chart » pour revenir à la forme graphique. Notez que les courbes affichées sur le graphique d'historique apparaissent comme des colonnes de valeurs en mode liste. La rangée sélectionnée dans la liste correspond au curseur du graphique d'historique.

e Edit \	iew							
Number	Start Date	Start Time	End Time	Duration	LCpk	LAeq	LAF95%	
1	2017-11-12	12:00:00 AM	12:01:00 AM	00:01:00	67.0	44.6	43.9	
2	2017-11-12	12:01:00 AM	12:02:00 AM	00:01:00	67.0	44.6	43.9	
3	2017-11-12	12:02:00 AM	12:03:00 AM	00:01:00	68.4	44.5	43.9	
4	2017-11-12	12:03:00 AM	12:04:00 AM	00:01:00	67.2	44.5	43.9	
5	2017-11-12	12:04:00 AM	12:05:00 AM	00:01:00	67.1	44.6	43.9	
6	2017-11-12	12:05:00 AM	12:06:00 AM	00:01:00	67.4	44.6	43.9	
7	2017-11-12	12:06:00 AM	12:07:00 AM	00:01:00	67.1	44.6	43.9	
8	2017-11-12	12:07:00 AM	12:08:00 AM	00:01:00	66.6	44.6	43.8	
9	2017-11-12	12:08:00 AM	12:09:00 AM	00:01:00	67.1	44.6	43.9	
10	2017-11-12	12:09:00 AM	12:10:00 AM	00:01:00	67.3	44.6	43.9	
11	2017-11-12	12:10:00 AM	12:11:00 AM	00:01:00	66.9	44.5	43.8	
12	2017-11-12	12:11:00 AM	12:12:00 AM	00:01:00	67.4	44.5	43.8	
13	2017-11-12	12:12:00 AM	12:13:00 AM	00:01:00	67.8	44.6	43.9	
14	2017-11-12	12:13:00 AM	12:14:00 AM	00:01:00	67.9	44.5	43.8	
15	2017-11-12	12:14:00 AM	12:15:00 AM	00:01:00	67.8	44.5	43.8	
16	2017-11-12	12:15:00 AM	12:16:00 AM	00:01:00	67.2	44.5	43.8	
17	2017-11-12	12:16:00 AM	12:17:00 AM	00:01:00	67.4	44.6	43.9	
18	2017-11-12	12:17:00 AM	12:18:00 AM	00:01:00	67.2	44.5	43.9	
19	2017-11-12	12:18:00 AM	12:19:00 AM	00:01:00	67.2	44.5	43.9	
20	2017-11-12	12:19:00 AM	12:20:00 AM	00:01:00	67.2	44.6	43.9	
21	2017-11-12	12:20:00 AM	12:21:00 AM	00:01:00	67.7	44.5	43.8	
22	2017-11-12	12:21:00 AM	12:22:00 AM	00:01:00	67.8	44.6	43.9	
23	2017-11-12	12:22:00 AM	12:23:00 AM	00:01:00	67.6	44.5	43.8	

Cliquez sur « Save » ou « Save As » du menu « File » pour enregistrer les mesures dans un fichier *.pic2.

Cliquez « Export » à partir du menu « File » pour exporter les mesures dans un fichier texte compatible avec Excel.

8.4.1 Troncage des Données

Cliquez sur « Trim to Time Range » du menu « Edit » pour tronquer les données à la partie visible du graphique. Il est recommandé de sauvegarder ces données tronquées dans un fichier distinct.

8.4.2 Recalcul d'Intervalles

Il est possible de recalculer des durées plus longues en cliquant sur « Calculate Longer Intervals » à partir du menu « Edit ». À noter que seul des enregistrements contigus sont considérés. Toute discontinuité sera conservée.

Notez également que les intervalles sont alignés sur les changements d'heure.

8.4.3 Calcul de Dose

Cliquez sur « Calculate Noise Dose » du menu « Edit » pour ouvrir l'utilitaire de calcul de dose. Cet utilitaire permet de calculer une dose sonore selon les normes ANSI S1.25 ou ISO 1999.

8.5 Logiciel Spectrum Analyzer

Le logiciel d'analyse spectrale permet d'enregistrer des spectres mesurés en bandes d'octave, en 1/3 d'octave et en FFT de façon simultanée.

- 1) Cliquez sur le bouton « Start » pour démarrer une mesure;
- 2) Cliquez sur « Stop » pour arrêter la mesure.

Le menu "File" permet:

- D'ouvrir un fichier *.sp2;
- D'enregistrer un fichier *.sp2;
- D'exporter un spectre en fichier texte.

Le menu "View" permet d'afficher le spectre avec les options suivantes:

- "Live" ou "Averaged";
- "1/1 Octave", "1/3 Octave" ou "FFT";
- Pondération fréquentielle "A", "C" ou "Z".

Le menu "Piccolo-II" permet de configure les paramètres relatifs à la mesure spectrale.

Piccol	×			
FFT Mod	e	Input Ra	inge	
Full	\sim	Low	~	Calibration
				OK

Note: La résolution et la largeur de bande de la FFT suivent la configuration du Piccolo-II. Référez à la section 5 pour plus d'information.

8.6 Logiciel Audio Recorder

Le logiciel d'enregistrement audio permet d'utiliser le Piccolo-II pour enregistrer des fichiers audios.

- 1) Cliquez sur le bouton « Start » pour démarrer un enregistrement;
- 2) Cliquez sur le bouton « Stop » pour arrêter l'enregistrement;
- 3) Lors de l'arrêt de l'enregistrement, le logiciel affichera un navigateur de fichier pour enregistrer le fichier résultant.

Le graphique affiche le signal temporel et la barre verticale affiche la dynamique.

Si une source externe est utilisée dans l'entrée jack, c'est cette source de signal qui sera utilisée pour le fichier audio.

– Soft dB

9 Spécifications Techniques

Sonomètre

Normes	IEC 61672-1 (2013) Class 2, Group X; ANSI S1.4-1 (2014) Class 2, Group X; ANSI S1.43 (2007) Type 2; IEC 60651 (1979), Amd.1(1993-02), Amd.2(2000-10) Type 2, Group X
Moyenne	Exponentielle (SPL F, S) et Linéaire (Leq)
Pondération temporelle	Slow ou Fast
Pondération fréquentielle	A, C et Z
Gammes dynamiques	Low ou High
Fréquence d'Échantillonnage	44.1 kHz
Valeurs mesurées	Leq, Lmax, Lmin, Lpeak, SEL, LN% (1%, 2%, 5%, 8%, 10%, 25%, 50%, 90%, 95%, 99%)
Niveau de crête maximal	Low: 110 dBZpk, High: 130 dBZpk
Limite de linéarité	Low: 30 dBA, High High: 46 dBA
Niveau de bruit électronique	Low: 24 dBA, Hig: 40 dBA
Niveau de bruit total	Low: 30 dBA, High: 40 dBA
Résolution numérique	0.1 dB
Sensibilité nominale du microphone	-35dB ±3 dB, ref 1V/Pa (17.78 mV/Pa)
Analyse Spectrale	
Normes	IEC 61260-1 (2014) Class 2, Group X (1/1 Octave), Group Z (1/3 Octave); ANSI S1.11-1 (2014) Class 2, Group X (1/1 Octave);
Moyenne	Linéaire (Leq)
Spectre 1/1 Octave	31.5 Hz à 8 kHz
Spectre 1/3 Octave (logiciel seulement)	20 Hz à 16 kHz
Spectre FFT	400 lignes, 6 largeurs de bande
Largeur de bande et résolution spectrale FFT	Full: 17.2kHz (43.1Hz) 8000: 8.62kHz (21.5Hz) 4000: 4.31kHz (10.8Hz) 2000: 2.15kHz (5.39Hz) 1000: 1.08kHz (2.69Hz) 500: 539Hz (1.35Hz)
Temporel	
Rafraichissement de l'affichage	0.1s
Résolution de durée de mesure	1s
Durées de mesure prédéfinies	1s, 10s, 1m, 5m, 15m, 60m (peuvent être redéfinies de 1s to 1h)
Résolution de l'horloge	15
Enregistrement	
Modes d'enregistrement	Single-Store ou Auto-Store
Alignement sur l'horloge	Single-Store: Non, Auto-Store: Oui
Valeurs enregistrées	Tous les globaux (A, C and Z), LN% (A, C or Z), 1/1 Octave, FFT (option)
Canacitó do mómoiro	Sans FET: 198 948 mesures Avec FET: 18 798 records

Entrée Auxiliaire					
Connecteur	Jack 1/8" (Femelle, Mono)				
Gamme dynamique	Low: ±0.16Vpk, High: ±1.6Vpk				
Aiguillage	Sélection automatique à la connexion du connecteur				
Sensibilité	Valeur de calibration indépendante de celle du microphone				
Environnement					
Température d'opération	0°C à 40°C				
Température d'entreposage	-10°C à 50°C				
Alimentation Électrique					
Puissance	70 mW (en mesure), 0.3 mW (en veille)				
Durée de vie de la batterie	48 h (en mesure), > 6 mois (en veille)				
Recharge de la batterie	5V (alimentation USB)				
Physique					
Dimensions	144mm x 59mm x 18.5mm (5 5/8″ x 2 5/16″ x 3/4″)				
Poids	115g (4 Oz.)				
Accessoires					
Écran anti-vent	35mm x 25mm (trou de 12mm)				
Câble USB	0.9m (3') A à Micro-B				
Valise de transport	213 mm x 183 mm x 62 mm (8.4" x 7.2" x 2.45")				
Certificat de calibration	Testé en conformité avec IEC 61672-3 (2013)				

10 Effectuer une Mesure en Conformité avec IEC 61672-3

10.1 Niveau de pression acoustique de référence

Le niveau acoustique de référence est 94.0 dB à 1 kHz.

10.2 Gamme dynamique de référence

La gamme dynamique de référence est « Low ».

10.3 Corrections à utiliser pendant les essais périodiques

10.3.1 Réponse en champ libre et en pression

Le Piccolo-II est conçu pour avoir une réponse plate (±0 dB) dans un champ libre à une incidence de 0°. Lorsque le Piccolo-II est soumis à un champ de pression, tel que dans la chambre de calibration d'un calibrateur, la réponse en pression suivante doit être prise en considération. La réponse en pression et les données de correction sont données pour le calibrateur modèle 4226 de B&K.

Fréq. (Hz)	Réponse en champ libre 0° (dB)	Corrections en champ libre 0° (dB)	Réponse en pression dans la chambre du calibrateur (dB)	Corrections en champ libre 0° dans la chambre du calibrateur (dB)	Incertitude (dB)
31.5	0.0	0.0	0.3	-0.3	0.3
63	0.0	0.0	0.6	-0.6	0.3
125	0.0	0.0	0.7	-0.7	0.3
250	0.0	0.0	0.6	-0.6	0.3
500	0.0	0.0	0.4	-0.4	0.3
1000	0.0	0.0	0.0	0.0	0.3
2000	0.0	0.0	0.3	-0.3	0.3
4000	0.0	0.0	0.8	-0.8	0.5
8000	0.0	0.0	-0.5	0.5	0.5
16000	0.0	0.0	-14.9	14.9	1.0

10.3.2 Réponse directionnelle

La figure ci-dessous présente la réponse directionnelle du Piccolo-II en fonction de l'angle d'incidence :

10.3.3 Effet de l'écran anti-vent

La figure suivante présente l'effet de l'écran anti-vent fourni avec le Piccolo-II (35mm x 25mm, trou de 12mm).

10.4 Bornes supérieure et inférieure de linéarité

10.4.1 Borne supérieure de linéarité de la gamme dynamique « Low »

Pondération fréquentielle	Fréquence (Hz)	Borne Supérieure (dB[A,C,Z], rms)	Borne Supérieure (dB[A,C,Z], peak)
A	31.5	67.6	70.6
А	500	103.8	106.8
А	1000	107.0	110.0
А	4000	108.0	111.0
А	8000	105.9	108.9
С	31.5	104.0	107.0
С	500	107.0	110.0
С	1000	107.0	110.0
С	4000	106.2	109.2
С	8000	104.0	107.0
Z	31.5	107.0	110.0
Z	500	107.0	110.0
Z	1000	107.0	110.0
Z	4000	107.0	110.0
Z	8000	107.0	110.0

Pondération fréquentielle	Fréquence (Hz)	Borne Supérieure (dB[A,C,Z], rms)	Borne Supérieure (dB[A,C,Z], peak)
А	31.5	87.6	90.6
А	500	123.8	126.8
А	1000	127.0	130.0
А	4000	128.0	131.0
А	8000	125.9	128.9
С	31.5	124.0	127.0
C	500	127.0	130.0
С	1000	127.0	130.0
C	4000	126.2	129.2
С	8000	124.0	127.0
Z	31.5	127.0	130.0
Z	500	127.0	130.0
Z	1000	127.0	130.0
Z	4000	127.0	130.0
Z	8000	127.0	130.0

10.4.2 Borne supérieure de linéarité de la gamme dynamique « High »

10.4.3 Borne inférieure de linéarité de la gamme dynamique « Low »

Pondération fréquentielle	Fréquence (Hz)	Borne inférieure (dBA, rms)
А	31.5	30.0
А	1000	30.0
А	8000	30.0

10.4.4 Borne inférieure de linéarité de la gamme dynamique « High »

Pondération fréquentielle	Fréquence (Hz)	Borne inférieure (dBA, rms)
А	31.5	46.0
А	1000	46.0
А	8000	46.0

10.4.5 Niveaux de départ pour les essais de linéarité

Le niveau de départ pour les essais de linéarité est 94 dB (1Pa, rms) à 1kHz. Ce niveau de départ est utilisé pour les deux gammes dynamiques, « Low » et « High ».

Pondération fréquentielle	Fréquence (Hz)	Pondération fréquentielle (dB)	Niveau de départ (dBA)
А	31.5	-39.4	54.6
А	1000	0.0	94.0
А	8000	-1.1	92.9

10.5 Essais électriques

10.5.1 Injection de Signaux Électriques

L'injection de signaux électriques dans le Piccolo-II est effectué par l'entrée auxiliaire. Cette entrée auxiliaire nécessite un connecteur Jack 1/8" mono (ne doit pas être stéréo). Le signal devrait être appliqué sur la pointe du connecteur et le commun devrait être appliqué sur le manchon.

Notez que lors de l'injection d'un signal électrique sur l'entrée auxiliaire du Piccolo-II, il est recommandé d'utiliser le sonomètre en mode autonome, soit sans connexion USB, pour éviter tout problème de bruit électronique. Si vous employez le connecteur USB, assurez-vous d'avoir une isolation du commun.

10.5.2 Ajustements aux Spécifications

Les spécifications techniques sont déterminées pour une sensibilité nominale de -35dB (ref 1V/Pa). Les variations de sensibilité d'un sonomètre à l'autre sont de ±3.0 dB. Si la sensibilité d'un instrument diffère par rapport à la sensibilité nominale, un ajustement des spécifications correspondant à l'écart de sensibilité doit être apporté :

Ajustement (dB) = -35(dB) - Sensibilité du Sonomètre (dB)

10.5.3 Calibration

Calibrez le microphone en utilisant un calibrateur conforma à la norme IEC 60942 Class 1 en utilisant un niveau de référence de 94dB à la fréquence de référence de 1kHz.

Suivez la procédure de calibration soit directement sur l'instrument (voir section 0) ou en utilisant l'utilitaire de calibration du logiciel (voir section 8.3.2).

La sensibilité nominale du microphone est de -35 dB (ref 1V/Pa) et la tolérance d'un appareil à l'autre est de ±3.0 dB.

10.5.4 Ajustement de la Sensibilité de l'Entrée Auxiliaire

Deux paramètres de sensibilités séparés sont employés par le Piccolo-II, soit une sensibilité pour le microphone et une seconde pour l'entrée auxiliaire. Pour effectuer les tests périodiques, les deux entrées doivent utiliser la même sensibilité, soit celle du microphone. Suivez la procédure suivante pour ajuster la sensibilité correctement :

- 1) Calibrez le microphone (voir section 10.5.3);
- 2) En utilisant le logiciel, cliquez sur le bouton « Calibrate » pour lancer l'utilitaire de calibration;
- 3) Sur l'interface de l'utilitaire de calibration, assurez-vous que le titre de la fenêtre est bien « Microphone Calibration »;
- 4) Localisez le champ de la sensibilité en mV/Pa et notez cette valeur;
- 5) Insérez le connecteur Jack dans l'entrée auxiliaire pour forcer un changement d'entrée;

- 6) Sur l'interface de l'utilitaire de calibration, assurez-vous que le titre de la fenêtre est bien « Auxiliary Input Calibration »;
- 7) Localisez le champ de la sensibilité en mV/Pa et entrez la valeur notée pour le microphone.
- 8) Cliquez sur OK.

10.6 Bruit propre

Le bruit propre est mesuré en effectuant une mesure Leq,30s.

10.6.1 Bruit propre total (acoustique et électrique)

Pondération fréquentielle	Gamme dynamique « Low »	Gamme dynamique « High »
А	30	40
С	39	42
Z	42	47

10.6.2 Bruit propre électrique

Pondération fréquentielle	Gamme dynamique « Low »	Gamme dynamique « High »
А	24	40
С	24	41
Z	28	45

11 Glossaire

Niveau Acoustique Pondéré Temporellement (SPL)

Exprimé en dB, le SPL représente le niveau sonore de la moyenne exponentielle glissante d'un signal de pression acoustique observé à un moment spécifique.

$$LW(t) = 10lg\left[\frac{1}{\tau_W} \cdot \frac{\int_{-\infty}^t p^2(t)e^{-t/\tau_W}dt}{p_0^2}\right]$$

- W est l'indication de la pondération temporelle employée, F pour Fast et S pour Slow
- τ_w est la constante de temps de la pondération temporelle 0.125s pour Fast et 1s pour Slow
- p(t) est le signal temporel de pression acoustique;
- p₀ est la pression acoustique de référence (2x10⁻⁵ Pa.)

Niveau Sonore Continu Équivalent (Leq)

Exprimé en dB, le Leq,T représente le niveau sonore continu équivalent d'un signal temporel de pression acoustique observé pendant une période de temps donnée.

Leq,
$$T = 10lg\left[\frac{1}{T} \cdot \frac{\int_{t-T}^{t} p^2(t)dt}{p_0^2}\right]$$

- T est la période d'observation;
- p(t) est le signal temporel de pression acoustique;
- p₀ est la pression acoustique de référence (2x10⁻⁵ Pa.)

Niveau Sonore de Crête (Lpk)

Exprimé en dB, le Lpk représente la pression sonore absolue maximale d'un signal temporel de pression sonore observé durant une période de temps donnée.

$$Lpk = 10lg\left[\frac{max(p^{2}(t), T)}{p_{0}^{2}}\right]$$

- T est la période d'observation;
- p(t) est le signal temporel de pression acoustique;
- p₀ est la pression acoustique de référence (2x10⁻⁵ Pa.)

Niveau Sonore Maximum et Minimum (Lmax, Lmin)

Exprimés en dB, les niveaux Lmax et Lmin représentent les niveaux sonores pondérés temporellement (SPL) maximum et minimum observés durant une période de temps donnée.

Percentiles (LN%)

Exprimés en dB, les LN% représentent les niveaux sonores pondérés temporellement (SPL) qui sont excédés N% d'une durée d'observation donnée. Les percentiles les plus courants sont L1%, L5%, L10%, L50%, L90%, L95% et L99%.

Niveau d'Exposition Sonore (SEL ou LE)

Exprimée en dB, le SEL (ou LE) représente l'énergie totale d'un signal temporel de pression acoustique observé durant une période de temps donnée.

$$LE, T = 10lg\left[\frac{\int_{t-T}^{t} p^2(t)dt}{p_0^2}\right]$$

- T est la période d'observation;
- p(t) est le signal temporel de pression acoustique;
- p₀ est la pression acoustique de référence (2x10⁻⁵ Pa.)

Pondération Fréquentielle (A, C, Z)

Les pondérations fréquentielles A, C et Z font référence à des filtres appliqués sur le signal temporel de pression acoustique. La figure suivante présente la réponse en fréquence de chaque pondération fréquentielle.

Notez que chaque indicateur de niveau sonore (SPL, Leq, SEL, Lpk, Lmax, Lmin, and LN%) peut être exprimé avec une pondération fréquentielle donnée. Par exemple, le LAeq représente le niveau sonore continu équivalent pondéré « A .

12 Certificat de Calibration Typique

Soft d	B 1040, Avenue Belvedere, S Quebec, Qc, Canada, GIS 1 (418) 686-0993 Email: info@softdb com www.softdb com	Suite 215 3G3	
Calibra	ntion Certificate N	o. P02QC201	7111301
InstrumentType:Integrating AvModel:Piccolo-IISN:P0216123199Class:2Mic Sensitivity:17.81mV/Pa (veraging Sound Level Meter 0.0 dB from nominal)		
Standards Tested in accordance with proced Part 3: Periodic tests Calibration Instruments	hures from ANSI/ASA S1.4-3 (2014) /	IEC 61672-3 (2013) Electro	pacoustics - Sound Level Meters -
Description	Manufacturer	Model	Serial Number
Function Generator	Stanford Research Systems	DS360	33623
Multi-function Calibrator	Brüel & Kjær	4226	1551588
Environmental Conditions			
Environmental Conditions	Danamatria Dr		Thursdite
Temperature	Barometric Pro	essure	Humidity
Calibrated by:	Technician N	Tame	Date : 17/11/13
Summary			
Description			PASS / FAIL
Section 11.1 - Self-generated nor	ise (Microphone)		Pass
Section 11.2 – Self-generated nor	ise (Electrical input)		Pass
Section 12 – Acoustical signal test	s of frequency weightings		Pass
Section 14 - Frequency and time	weightings at 1 kHz		Pass
Section 15 - Long-term stability			Pass
Section 16 – Level linearity on th	e reference level range		Pass
Section 17 – Level linearity inclu	iding range control		Pass
Section 19 – C-weighted peak so	und level		Pass
Section 20 – Overload indication			Pass
Section 21 - High-level stability			Pass
Declaration of Conformity The sound level meter submitted (2013) (limited to sections 11, 12 performed.	for testing has successfully completed , 13, 14, 15, 16, 17, 18, 19, 20 and 21)	the Class 2 tests of ANSI/A), for the environment condi	SA S1.4-3 (2014) / IEC 61672-3 tions under which the tests were
Certificate No. : P02QC2017111	301 17/11/13		Page 1 of 4

– Soft dB

Range	Lev	el	Applied	Measure	Error	Tol	lerance	PASS / FAIL
Low	Ret	f.	94.0	94.0				
Low	UR+5	ōđB	37.0	37.1	0.1		1.1	Pass
High	Ret	£.	94.0	94.0	0.0		1.1	Pass
High	UR+3	ōđB	53.0	53.1	0.1		1.1	Pass
EC 61672-3	– Section 18	– ToneBu	rst Response					
Tb(ms)	Data	Applied	Measure	Meas. Diff.	Target Diff.	Error	Tolerance	PASS / FAI
200	LASmax	104.9	97.5	-7.4	-7.4	0.0	±1.0	Pass
2	LASmax	104.9	77.9	-27.0	-27.0	0.0	1.0; -5.0	Pass
200	LAFmax	104.9	103.9	-1.0	-1.0	0.0	±1.0	Pass
2	LAFmax	104.9	86.2	-18.7	-18.0	-0.7	1.0; -2.5	Pass
0.25	LAFmax	104.9	77.7	-27.2	-27.0	-0.2	1.5; -5.0	Pass
200	LAE	104.9	98.0	-6.9	-7.0	0.1	±1.0	Pass
2	LAE	104.9	78.0	-26.9	-27.0	0.1	1.0; -2.5	Pass
0.25	LAE	104.9	68.9	-36.0	-36.0	0.0	1.5; -5.0	Pass
EC 61672-3	- Section 19	- C-Weig	hted Peak Sou	ind Level	T (D (C))			D. 00 / 5
Freq.	Cycle	Applied	Meas.	Meas. Diff.	Target Diff.	Error	Tolerance	PASS / FAI
31.5Hz	1 (Full)	119.9	123.1	3.2	2.5	0.7	±3.0	Pass
500Hz	1 (Full)	123.0	126.6	3.6	3.5	0.1	±2.0	Pass
8KHZ	I (Full)	119.9	123.1	3.2	5.4	-0.2	±3.0	Pass
SOUHZ	⁷ 2 (POS.)	123.0	124.8	1.8	2.4	-0.6	±2.0	Pass
Data	Free	q. (Overload (+)	Overload (-)	Error	Tol	erance	PASS / FAIL
Data	Free 4kH	q. (Overload (+)	Overload (-) 68 3	Error 0.2	Tol	erance	PASS / FAIL Pass
Data LZE LCE	Free 4kH 4kH	q. (Iz Iz	Overload (+) 68.1 67.5	Overload (-) 68.3 67.7	Error 0 2 0 2	Tol	erance ±1.5 ±1.5	PASS / FAIL Pass Pass
Data LZE LCE LAE	Free 4kH 4kH 4kH	n. (Iz Iz Iz	Overload (+) 68.1 67.5 68.4	Overload (-) 68.3 67.7 68.5	Error 0 2 0 2 0 1	Tol	terance ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass
Data LZE LCE LAE LZpk	Free 4kH 4kH 4kH 4kH]. ([z [z [z	Overload (+) 68.1 67.5 68.4 110.0	Overload (-) 68.3 67.7 68.5 110.0	Error 0 2 0 2 0 1 0 1	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass
Data LZE LCE LAE LZpk LCpk	Free 4kH 4kH 4kH 4kH	1. (12 12 12 12 12 12 12 12 12	Overload (+) 68.1 67.5 68.4 110.0 109.1	Overload (-) 68.3 67.7 68.5 110.0 109.1	Error 0 2 0 2 0 1 0.0 0.0	Tol = = = =	terance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass Pass
Data LZE LCE LAE LZpk LCpk High Range	Free 4kH 4kH 4kH 4kH 4kH	A. (Iz Iz Iz Iz Iz Iz	Overload (+) 68.1 67.5 68.4 110.0 109.1	Overload (-) 68.3 67.7 68.5 110.0 109.1	Error 0 2 0 2 0 1 0.0 0.0		lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass
Data LZE LCE LAE LZpk LCpk Iigh Range Data	Free 4kH 4kH 4kH 4kH 4kH 4kH	A (Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 98.4	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-)	Error 0 2 0 2 0 1 0.0 0.0 Error	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 lerance	PASS / FAIL Pass Pass Pass Pass Pass PASS / FAIL
Data LZE LCE LAE LZpk LCpk Tigh Range Data LZE	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH	1. (1. ())))))))))))))))))))))))))))))))))))	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6	Error 0 2 0 2 0 1 0.0 0.0 Error 0 2 0 2	Tol	lerance	PASS / FAIL Pass Pass Pass Pass PASS / FAIL Pass Pass
Data LZE LCE LAE LZpk LCpk Data LZE LCE LCE	Free 4kH 4kH 4kH 4kH 4kH Free 4kH 4kH	1. 0 1z 1z	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4	Error 0 2 0 1 0.0 0.0 0.0 Error 0 2 0 2 0 2	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass PASS / FAIL Pass Pass Pass Pass Pass
Data LZE LCE LAE LZpk LCpk Tigh Range Data LZE LCE LAE LAE LZpk	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH	q. (iz iz iz iz iz iz iz iz iz iz iz iz	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0	Error 0 2 0 1 0.0 0.0 Error 0 2 0 2 0 2 0 2 0 0	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass PASS / FAIL Pass Pass Pass Pass Pass
Data LZE LAE LZpk LCpk LCpk LCpk LZE LZE LAE LAE LZpk LCpk	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH	q. (iz iz iz iz iz iz iz iz iz iz iz iz iz	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0 129.2	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0 129.2	Error 0 2 0 1 0.0 0.0 Error 0 2 0 2 0 2 0 2 0.0 0.0		lerance ±1.5 ±1	PASS / FAIL Pass Pass Pass Pass Pass PASS / FAIL Pass Pass Pass Pass Pass Pass
Data LZE LCE LAE LZpk LCpk Migh Range Data LZE LAE LZPK LCE LAE LZPK LCPk	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH	A (IZ I	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0 129.2 vel Stability	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0 129.2	Error 0 2 0 2 0 1 0.0 0.0 Error 0 2 0 2 0 2 0 2 0.0 0.0	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass PASS / FAIL Pass Pass Pass Pass Pass Pass Pass
Data LZE LCE LZpk LZpk LCpk digh Range Data Data LZE LZE LZE LAE LZPk LCPk EC 61672-3 Initia	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH	A C IZ I	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0 129.2 vel Stability 1	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0 129.2 Error	Error 0 2 0 2 0 1 0.0 0.0 Error 0 2 0 2 0 2 0 2 0.0 0.0	Tol	lerance 1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass PASS / FAIL Pass Pass Pass Pass Pass Pass Pass Pas
Data LZE LCE LAE LZpk LCpk Iigh Range Data LZE LCE LAE LZpk LCpk EC 61672-3 Initi 126.	Free 4kH 0	1. (1) 1. (2) 1. (2)	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0 129.2 vel Stability 1 0 0	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0 129.2 Error 0.0	Error 0 2 0 2 0 1 0.0 0.0 0 2 0 2 0 2 0 2 0.0 0.0 0.0	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass Pass Pass Pas
Data LZE LCE LAE LZpk LCpk Migh Range Data LZE LCE LAE LCE LAE LZpk LCPk EC 61672-3 Initia 126.	Free 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH 4kH	A (IZ IZ I	Overload (+) 68.1 67.5 68.4 110.0 109.1 Overload (+) 88.4 87.8 88.6 130.0 129.2 vel Stability 1 0 0	Overload (-) 68.3 67.7 68.5 110.0 109.1 Overload (-) 88.2 87.6 88.4 130.0 129.2 Error 0.0	Error 0 2 0 1 0.0 0.0 Error 0 2 0 2 0 2 0 2 0.0 0.0 0.0	Tol	lerance ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5 ±1.5	PASS / FAIL Pass Pass Pass Pass Pass Pass Pass Pas

13 FAQ

Puis-je alimenter le Piccolo-II avec une batterie externe?

Oui, le Piccolo-II Yes, the Piccolo-II peut être alimenté avec une batterie externe. Toutefois, il est important de mentionner que seulement certaines batteries sont pleinement compatibles.

Les batteries USB *intelligentes* qui sont largement répandues sur Internet sont conçues pour recharger un appareil mobile et se déconnecter automatiquement lorsque la batterie de l'appareil mobile est pleine. Étant donné que la batterie du Piccolo-II est pleinement chargée quand il est utilisé de la sorte, la batterie externe se déconnecte automatiquement et ne fournit pas d'énergie.

Par conséquent, la batterie recommandée est une batterie très simple qui fournit une tension électrique directement sur les contacts du connecteur USB comme celle-ci :

Quatre batteries AA (4x 3200 mAh) devraient fournir 3 à 4 jours d'autonomie additionnelle avant que la batterie interne du Piccolo-II commence à être utilisée.

Important : La tension maximale permise sur le connecteur USB est 7V.

Notez qu'aucun support technique ne sera fourni sur l'usage d'une batterie externe. En outre, la garantie ne couvre pas les bris causés par l'utilisation d'une batterie externe.

Est-ce que le Piccolo-II est imperméable?

Non, le Piccolo-II n'est pas imperméable. Exposer le Piccolo-II à l'eau peut endommager le microphone et le circuit électronique. Les bris causés par l'eau ne sont pas couverts par la garantie.

14 Garantie

Soft dB garantie que cet instrument est libre de défaut de fabrication pendant un an suivant la date d'achat. Contactez-nous à <u>info@softdb.com</u> si vous avez besoin de retourner l'appareil pour une réparation pendant ou après la période couverte par la garantie. Un formulaire de retour au manufacturier (RMA) doit être émis avant que le produit ne soit retourné à Soft dB. Le client est responsable des frais de transport, d'assurance, de dédouanage et des taxes. Le client est responsable d'emballer convenablement le produit pour éviter les dommages durant le transport. Cette garantie ne couvre pas les problèmes résultants d'actions de l'utilisateur telles que : toute utilisation contraire aux directives contenues dans le manuel d'utilisation, toute modification ou réparation non autorisée, ou tout entretien insuffisant. Soft dB se décharge de toute garantie additionnelle, de toute marchandisation non autorisée et de toute conséquence liée à l'utilisation du produit. La seule responsabilité de Soft dB est limitée à la réparation ou au remplacement du produit. Cette déclaration de garantie est unique et inclusive et aucune autre garantie, qu'elle soit écrite ou orale, n'est impliquée.