SR3-Ethernet

User’s Manual

by

Soft EI:]

In association with

D
(%=1

Convergence
Instruments

October 16 2009

1040, avenue Belvédére, suite 215
Québec (Québec) G1S 3G3 Canada
Tél.: (418) 686-0993 Fax: (418) 686-2043

1 MAIN FEATURES

2 TRANSFER PERFORMANCE

3 LED INDICATORS

4 LABVIEW INTERFACE

4.1 Preliminary Remarks

4.2 Opening the Target

421 Loading and Executing Code Dynamically

43 Network Interface Vis

431 Core Interface Vs

4.3.2 Flash Support Vis

5 C/C++ INTERFACE

5.1 Execution Timing and Thread Management

5.2 Calling Conventions

16

17

17

5.3 Building a Project Using Visual Studio

17

5.4 Exported Interface Functions

18

54.1 SR3_DLL_Net Open_Next_Avail_Board
5.4.2 SR3 DLL_Net Close_BoardNb

18

19

54.3 SR3 DLL_Net Bulk Move Offset U8

19

544 SR3_DLL_Net K_Exec

21

5.4.5 SR3 DLL_Net Flash_InitFlash

21

5.4.6 SR3_DLL_Net_Flash_EraseFlash

22

54.7 SR3_DLL_Net_Flash_FlashMove_U8

22

6 DSP SUPPORT CODE

6.1 Operation Of The Net_Kernel

23

23

6.2 Resources Used By The Net_Kernel

25

6.2.1 Code Size

25

6.2.2 Execution Time

25

SR3_Ethernet - User’s Manual

—[Soft BT}

1 Main Features

SR3 Ethernet is an add-on board that provides network connectivity to the SignalRanger mk3
platform. The network connection provides services similar to the USB connection, with the following
differences:

e Using the network connection the SignalRanger_mk3 board can be accessed in stand-alone
mode from anywhere a network connection is available. Using this connection SignalRanger_mk3
can be controlled from remote locations in a local network, or through the internet.

The network connection is not as fast as the USB connection.

e The network connection is not as forceful as the USB connection. In particular it does not allow the
controlling computer to take control of the board when its firmware has crashed.

e The network connection does not support dynamic reloading of DSP code in RAM. However it
does support reloading of new firmware in Flash, and rebooting the board from this newly
reflashed code.

e The network connection has a much larger footprint on the user code than the USB connection in

terms of required memory and execution time.

The network driver on the DSP runs in the foreground, usually in the main loop of the user code.

The SR3_Ethernet board and its associated firmware feature:

e |EEE 802.3-compliant fast Ethernet connection.

e Supports 10/100Base-T port with automatic polarity detection and correction.

e Supports auto-negotiation.

e Supports TCP/IP, DHCP, UDP, ARP, DNS, NetBIOS Name Service Server, DDNS, ICMP.

The software support, both at the level of the board and at the level of the host uses the TCP/IP
protocol to communicate with and control the board. A higher-level protocol called Net DDCI
encapsulates all the communication and control functions.

The SignalRanger_mk3 behaves as a TCP server. It responds to socket number 50000d.
2 Transfer Performance

The transfer speed and reliability is very much dependant on the particular LAN network to which the
board is connected. The following bandwidths have been measured on a dedicated LAN:

Host Read | Host Write

3.75Mb/s | 3.75 Mb/s

3 LED Indicators
The Ethernet jack includes two LEDs:

e The green LED indicates that the link is established.
e The yellow LED flashes when Ethernet packets are received by the board.

SR3_Ethernet - User’s Manual 4

—[Soft BT}

4 LabVIEW Interface

4.1 Preliminary Remarks

The SR3 Net LabVIEW interface includes functions similar to those of the native USB interface.
Operation of these functions requires that the DSP user code include the Net_Kernel library. See
section on DSP support code below for details.

Note: Even though they are similar in form and function, the SR3_Net interface and the SR3_Base
interface are not compatible. Trying to connect any of the SR3 Net interface VIs to an SR3_Base
BoardRef control will create a run-time error. So will the reverse.

4.2 Opening the Target

Opening a target through the network connection is very similar to opening a target through the USB
connection, except that board communications go through a TCP connection, rather than through a
USB connection.

The SR3_Net LabVIEW interface can manage multiple simultaneous target connections. Each time a
target connection is opened, the SR3_Net_Open_Next_Avail Board.vi Vi opens a TCP connection to
the target and creates a data structure that represents the target board The VI returns a BoardRef Out
indicator. This BoardRef _Out indicator is used as a handle on the specific target. It represents the
specific target and its associated data structure. All the VIs in the interface use this handle as an input.

The connection to a specific target is exclusive. Once a target is opened using
SR3 Net_Open_Next_Avail_Board.vi, no other host or application can take control of this particular
target until the present connection is closed.

After the connection to the board is no longer required, the SR3_Net Close_BoardNb is used to close
the TCP connection, release the associated data structure, and allow other host or applications to take
control of the board.

A patrticular target can only have one connection with a host application. A host application on the other
hand can have connections with - and manage - multiple target boards.

The SR3_Net Open_Next_Avail_Board.vi uses an identifier string to open the target. This string points
to a database within the LabVIEW interface that contains the hardware characteristics of the board,
such as its board model, DSP type, Flash addresses... etc. When the target is opened, this information
is stored in a global variable array. There is one array element, representing one target, for every target
opened by the host.

After opening the board, the SR3_Net Open_Next_Avail_Board.vi reads the DSP code and FPGA file
names in Flash, if any, as well as their checksums. If a DSP firmware is present in Flash, the
SR3 Net_Open_Next_Avail_Board.vi then loads the symbol table that follows the code in Flash. This
symbol table is used to provide symbolic access to the DSP code, including the network functions
themselves. This information is then also stored in the global variable array so that every VI in the
interface can use it.

Optionally the SR3_Net_Open_Next_Avail_Board.vi can selectively open only the targets that have a
DSP/FPGA file name pair that is part of a provided list. This provides the basis to selectively open the
products and revision numbers provided in the list. Practically the SR3_Net_Open_Next_Avail_Board.vi
briefly opens the target, reads the file names from Flash and closes the target back if the file names
and checksums are not part of the provided list.

SR3_Ethernet - User’s Manual 5

—[Soft BT}

4.2.1 Loading and Executing Code Dynamically

Contrary to the native SR3_Base interface libraries, the SR3_Net libraries do not provide functions to
load DSP code dynamically. The closest way to implement these functions is to reprogram the Flash
and reboot the DSP code from the Flash.

4.3 Network Interface Vis

The Network interface is organized as several folders in the Signal_Ranger_mk3.lvlib library. All the
libraries with nhames ending in “_U” contain support Vis and it is not expected that the developer will
have to use individual Vis in these libraries.

These Vs and libraries operate in the same way as the VIs and libraries that support the USB
connection. They have similar names, often with a “Net” in their name.

4.3.1 Core Interface Vs
4.3.1.1 SR3_Net Open_Next_Avail_Board
This Vi performs the following operations:

Tries to find an available DSP board with the selected identifier or IP address, and optionally that
has the firmware indicated in the Restrict control.

If it finds one, creates an entry in the Global Board Net Information Structure.

If a DSP firmware is detected in Flash (code has been loaded and started as part of the power-up
sequence), loads the corresponding file name and symbol table from Flash.

Places the symbol table of the kernel in the Global Board Net Information Structure.

Controls:

Restrict iET BoardRef
Identifier ij pen . =Firmware_MNames
IP Address (ex. 192.163.0,100) mj o | atest_Rewvision
error in (no error) error out
timeout ms (B0000)
Restrict: This is a structure used to restrict the access by firmware names and

checksums. If this control is connected and not empty, the access is restricted to the boards
having a pair of DSP and FPGA file names with corresponding checksums in the list provided.
The firmware in Flash must match both names and checksums in an element of the array for the
board to be accepted. Each element in the list usually represents a particular revision of the
product’s firmware. This control should be wired to restrict the opening to boards that have been
configured as specific products, and avoid opening boards used by other OEMs, or other products
of the same OEM.

Identifier: This is a string used to identify the hardware type of board to open. This
control must always be wired, and must be initialized with the correct symbolic name for the board.
There are several hardware variations of the SignalRanger_mk3 architecture, including custom
implementations. For instance the standard SignalRanger_mk3 board has an identifier equal to
SRM3.

IP-Address: If the IP address is wired, then the VI tries to open a board at the specified IP
address, and verifies that it is the proper platform by checking it against the Identifier. If the IP-
Address is not wired, then the VI tries to open the first board on the network that has the proper
identifier.

Error In LabVIEW instrument-style error cluster. Contains error number and
description. Leave it unwired if this is the first interface VI in the sequence.
Timeout ms If the TCP connection to the specified board does not occur within the

specified time-limit, the VI returns with an error.

SR3_Ethernet - User’s Manual 6

—[Soft BT}

Indicators:

e BoardRef: This is a number pointing to the entry corresponding to the board in the in
Global Board Net Information Structure. The interface can manage a multitude of boards
connected to the same PC. Each one has a corresponding BoardRef number allocated to it when
it is opened. All other interface Vis use this number to access the proper board.

e Firmware_Names: Cluster containing the names of the DSP and FPGA firmware files that are
found in Flash. The fields are empty if the Flash does not contain any firmware. The fields are also
empty if the ForceReset control is true.

e Latest Revision: This indicator is true if the pair of firmware file names and checksums found in
Flash correspond to the last element provided in the Restrict array. In most implementations the
Restrict array contains the name-pairs of different firmware revisions of a given product, in
ascending order. When this is the case the Latest_Revision indicator is true when the firmware
detected in the Flash of the board is indeed the latest firmware known to the controlling
application.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

Note: Once a connection has been opened with a board, the board will not respond to other clients
requesting a connection. A consequence of this is that a board cannot be opened twice. A board that
has already been opened using the SR3_Net Open_Next Avail Board VI cannot be opened again
until it is properly closed using the SR3_Net_Close_BoardNb VI. This is especially a concern when the
application managing the board is shut-down under abnormal conditions. If the application is shut-down
without properly closing the connection to the board, the next execution of the application may fail to
find and open the board, simply because the corresponding TCP socket is still open on the board side.
In such a case simply cycle the power on the board, or disconnect and reconnect the network cable to
force the board to close its local socket.

4.3.1.2 SR3_Net Close_BoardNb

This Vi Closes the TCP connection used to access the board, and frees the corresponding resources in
the Global Board Information Structure. It is used after the last access to the board has been made, to
release resources that are not used anymore.

BoardRef —HET dupBoardRef
error in (no errar) CLOZE error out
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 Net _Open_Next_Avail_Board.vi
e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running Vi.
Indicators:
e DupBoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

SR3_Ethernet - User’s Manual 7

—[Soft BT}

4.3.1.3 SR3_Net_Bulk_Move_Offset
This VI reads or writes an unlimited number of data words to/from the address space of the DSP, using
the Net_Kernel.

The VI is polymorphic, and allows transfers of the following types:

Signed 8-bit bytes (18), or arrays of this type.

Unsigned 8-bit bytes (U8), or arrays of this type.

Signed 16-bit words (116), or arrays of this type.
Unsigned 16-bit words (U16), or arrays of this type.
Signed 32-bit words (132), or arrays of this type.
Unsigned 32-bit words (U32), or arrays of this type.
32-bit floating-point numbers (float), or arrays of this type.
Strings

These represent all the basic data types used by the DSP’s C compiler.

To transfer any other type (structures for instance), the simplest method is to use a “cast” to allow this
type to be represented as an array of U8 on the DSP side (cast the required type to an array of U8 to
write it to the DSP, read an array of U8 and cast it back to the required type for a read).

The DSP address and memory space of the transfer are specified as follows:

If Symbol is wired, and the symbol is represented in the symbol table, then the transfer occurs at
the address and memory space corresponding to Symbol. Note that Symbol must represent a
valid address. Also, the DSP COFF file must be linked with the usual page number convention:

e Program space = page number O

o Data space = page number 1

e 10 space = page number 2

o All other page numbers are accessed as data space.
If Symbol is unwired, then DSPAddress is used as the byte-address for the transfer, and
MemSpace is used as the memory space.
Note that DSPAddress may be required to be aligned to the proper width, depending on the
specific platform.
The value of Offset is added to DSPAddress. This functionality is useful to access individual
members of structures or arrays on the DSP. Note that the value of Offset is always counted in
bytes, not in elements of the specified type. This is required to access an individual member of an
heterogeneous structure.
In case of a write of a data type narrower than the native type for the platform, then additional
elements are appended to complete the write to the next boundary of the native type. The
appended values are set to all FFy.

Note: The Net Kernel must be loaded and executing for this Vi to be functional.

Note: Since the VI is polymorphic, to read a specific type requires that this type be wired at the
Dataln input. This simply forces the type for the read operation.

Note: When reading or writing scalars, Size must be left unwired.

SR3_Ethernet - User’s Manual 8

4.3.1.3.1 Notes on Transfer Atomicity

Contrary to the native USB kernel, the Net Kernel performs all its transfers synchronously to the
execution of the foreground DSP user code. A consequence of this is that a host-initiated transfer
cannot cut in the middle of a data operation executed in the foreground on the DSP. Symmetrically, a
foreground DSP operation cannot cut in the middle of a host-initiated data transfer.

This remark does not include DSP code that executes under interrupts. A host-initiated transfer cannot
cut in the middle of a data operation on the DSP executed in an interrupt service routine. However a
data operation executed on the DSP in an interrupt service routine can cut in the middle of a host-
initiated transfer.

In short, the integrity of the wide data transferred to and from the DSP is maintained when transferring
data that is not processed under interrupts. The only case when the developer should be careful is
when transferring data that is processed (written) by the DSP code under interrupts. In this case there
is always the possibility of the interrupt processing cutting in the middle of the host-initiated transfer, and
writing over parts of the data being transferred. This is especially a concern when the data transferred
is wider than the byte. In this case, portions of a word can be overwritten by the DSP interrupt while the
others are not, corrupting the wider transferred word. When this is a concern we recommend the use of
a secondary buffer and semaphores to sequence the transfer.

Controls:

Symbaol
Ab:lmlc I:T:l
Offzet (0) —]
BoardRef %‘?:ﬂ . dupBoardRef
Dataln I— DataOut
MemSpace Jm&’ Real D5PAddress
DSPAddress error out
error in (no error) s
Size (0)
R,’ W {F-}W}
BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 Net_Open_Next_Avail_Board.vi
Dataln: Data words to be written to DSP memory. Dataln must be wired, even for a
read, to specify the data type to be transferred.
MemSpace: Memory space for the exchange (data, program or 10). MemSpace is
only used if Symbol is empty or left unwired.
DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used if
Symbol is empty or left unwired.
Size: Only used for reads of array types, represents the size (in number of items of

the requested data type) of the array to be read from DSP memory. For Writes, the whole
contents of Dataln are written to DSP memory, regardless of Size. When Size is wired, the data
can only be transferred as arrays, not scalars.

Symbol: Character string of the symbol to be accessed. If Symbol is empty or unwired,
DSPAddress and MemSpace are used.
Offset: Represents the offset of the data to be accessed, from the base address

indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of the
base address and the offset. Offset is useful to access individual members of a structure, or an

array.
R/~W: Boolean indicating the direction of transfer (true->read, false->write).
Atomic: Boolean indicating if the transfer is made atomic or not. This control is present

for compatibility with the equivalent native USB VI, but it has no effect in the network interface.

SR3_Ethernet - User’s Manual 9

e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running Vi.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e DataOut: Data read from DSP memory.

e Real DSPAddress: Actual address where the transfer took place. This address takes into account
the resolution of Symbol (if used), and the effect of Offset.

e ErrorCode: This is the error code returned by the kernel function that is executed. The
value of this indicator is irrelevant in this interface.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.1.4 SR3_Net K Exec

This VI forces execution of the DSP code to branch to a specified address, passed in argument. If
Symbol is wired and not empty, the Vi searches in the symbol table for the address corresponding to
the symbolic label. If the symbol is not found, an error is generated. If Symbol is not wired, or is an
empty string, the value passed in DSPAddress is used as the entry point.

Contrary to the native USB interface there is no need for an acknowledge in the user DSP function. A
USB acknowledge in the function will not cause any problems however. In other words, a DSP function
called by a native USB SR3_Base K_Exec can also be called by SR3_Net K_Exec.

Note: Contrary to the native USB kernel, the Net_Kernel cannot be reentered. 2 conditions must be
observed for SR3_Net_K_Exec to work properly:

e The called function must return. Calling a function that does not return will stop the operation of the
Net Kernel

e The called function must be relatively short. The kernel is stopped, and the host blocks until the
called function returns.

Symbaol
BoardRef HET dupBoardRef
Forego_Acknowledge -1 " LErrorCode
DSPAddress Eu %oox prror out

error in (no errar)

Controls:

e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 Net Open_Next_Avail_Board.vi

e Forego_Acknowledge: When this boolean is true, the VI does not wait for the acknowledge
sent back by the board to signal the end of the function. This is only used in very rare
circumstances when the VI is used to launch code in a “shoot and forget” manner. In normal
circumstances the boolean should be left unconnected or set to false.

e DSPAddress: Physical branch address. It is used if for the branch if Symbol is empty or left
unwired.

e Symbol: Character string of the symbol to be accessed. If Symbol is empty,
DSPAddress is used instead.

e Errorin: LabVIEW instrument-style error cluster. Contains error number and

description of the previously running Vi.

SR3_Ethernet - User’s Manual 10

—[Soft BT}

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e ErrorCode: This is the error code, or completion code, returned by the user DSP function
that is executed. For the Net_Kernel, this completion code is 0x32.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2 Flash Support Vis

These Vis are provided to support Flash-programming operations. The Vis equally support Flash-
reading operations and Flash programming operations for symmetry. However reading the Flash does
not require these special functions and can be carried out by SR3_Net Bulk_Move_Offset.

The VIs in this library require that the DSP code be placed in a special Park state. This is done by the
SR3_Net_Flash_InitFlash VI. In this state the DSP disables ALL interrupts and only services the
Net_Kernel by polling. In effect, all previously running code is aborted. Even the native USB kernel is
rendered inoperative. The only way to get out of this state is to call the VI
SR3_Net Reload_from_Flash.

4.3.2.1 SR3_Net Flash_InitFlash

This VI places the DSP in the Park state. All previously running DSP code is aborted. Contrary to the
native USB kernel, the Flash-support code is already resident in the Net_Kernel and does not need to
be loaded.

BoardRef "E_"j_ dupBoardRef
_ 2 Flashsize (kW)
error in {no error) ! Ren arrar ot
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 _Net_Open_Next_Avail_Board.vi
e Errorin: LabVIEW instrument-style error cluster. Contains error number and

description of the previously running VI.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e FlashSize: This indicator returns the size of the Flash. The flash is not detected, the VI
returns a constant value.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2.2 SR3_Net Reload_from_Flash
This VI exits the Park state by the following sequence:

. Branches to the BootFlashUserCode function of the kernel. This function:
e Loads the DSP firmware and FPGA logic that it finds in Flash
e Branchestoit

SR3_Ethernet - User’s Manual 11

—[Soft BT}

e This causes the board to reboot, therefore losing its current network link. A short time after
rebooting the board recovers its link status, IP address...etc.

e Closes the current TCP connection on the host.

e Reopens the connection to the board using the same IP address that was in effect before the
close.

For the new TCP connection to work, it is required that:

e The DHCP server on the LAN allocates the same IP address to the board that was in effect just
before the reboot.

e The newly loaded code includes an implementation of the Net_Kernel.

In effect this sequence implements the newly flashed code.

BoardRef —HET dupBoardRef
timeout ms (25000) ——— fee* |
error in (no error) = S errar out
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 _Net_Open_Next_Avail_Board.vi
e Timeoutms If the operation does not occur within the specified time-limit, the VI returns

with an error. It is normal for the operation to take a few seconds, since the board must be
rediscovered on the LAN by the DHCP server.

e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running VI.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e FErrorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2.3 SR3_Net Flash_EraseFlash

This VI erases the required number of 16-bit words from the Flash, starting at the selected address.
The erasure proceeds in sectors, therefore more words may be erased that are actually selected. For
instance, if the starting address is not the first word of a sector, words in the same sector before the
starting address will be erased. Similarly, if the last word selected for erasure is not the last word of a
sector, additional words will be erased, up to the end of the last selected sector. The erasure is such
that the selected words, including the starting address, are always erased.

Note: On SignalRanger_mk2_ Next Generation the sector size is 32 kwords. On SignalRanger_mk3
the sector size is 64 kwords (128 kBytes).

Note: Erasure should only be attempted in the sections of the memory map that contain Flash.
Erasure attempts outside the Flash will fail.

SR3_Ethernet - User’s Manual 12

BoardRef NEL dupBoardref
Starting Address E
Size (16-hits words) f Bl Loeeeeeee error out
errar in {no error)
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the

Global Board Information Structure. Itis created by SR3_Net_Open_Next_Avail_Board.vi
e Starting Address: Address of the first word to be erased.
e Size: Number of words to be erased.
e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running Vi.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net _Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2.4 SR3_Net Flash_FlashMove

This VI reads or writes an unlimited number of data words to/from the Flash memory. Note that if only
Flash memory reads are required the VI SR3 Net Bulk_Move_Offset should be used instead, since it
does not require that the Flash be placed in the Park state.

The VI is polymorphic, and allows transfers of the following types:

Signed 8-bit bytes (18), or arrays of this type.

Unsigned 8-bit bytes (U8), or arrays of this type.

Signed 16-bit words (116), or arrays of this type.

Unsigned 16-bit words (U16), or arrays of this type.

Signed 32-bit words (132), or arrays of this type.

Unsigned 32-bit words (U32), or arrays of this type.

32-bit floating-point numbers (float), or arrays of this type.

Strings

These represent all the basic data types used by the C compiler for the DSP.

To transfer any other type (structures for instance), the simplest method is to use a “cast” to allow this
type to be represented as an array of U8 on the DSP side (cast the required type to an array of U8 to
write it to the DSP, read an array of U8 and cast it back to the required type for a read).

An attempt to write outside of the Flash memory will result in failure.

The write process can change ones into zeros, but not change zeros back into ones. If a write operation
is attempted that should result in a zero turning back into a one, then it results in failure. Normally an
erasure should be performed prior to the write, so that all the bits of the selected write zone are turned
back into ones.

Note: Contrary to the SignalRanger_mk2_NG generation, incremental programming (programming
the same address multiple times) is permitted on SignalRanger_mk3. Each programming operation
cannot set individual bits from 0 to 1. This can only be done by an erasure cycle on a whole sector.

SR3_Ethernet - User’s Manual 13

—[Soft BT}

However the programming operations can reset individual bits from 1 to 0 at any time without
intervening erasure.

In case of a write of a data type narrower than 16-bits (the native type for the Flash) additional elements
are appended to complete the write to the next 16-bit boundary. The appended values are set to all
FFu.

Since the VI is polymorphic, to read a specific type requires that this type be wired to the Dataln input.
This simply forces the type for the read operation.

Note: When reading or writing scalars, Size must be left unwired. |

The Flash'’s internal representation is 16-bit words. When reading or writing 8-bit data, the bytes
represent the high and low parts of 16-bit memory registers. They are presented MSB first and LSB
next.

Symbi| ~rrrrrnnnnnnnnn
Offset () ————
Buardﬂiei E{:—Eh"' dupBoardref
Dataln l— DataOut
MemSpace ‘:ETE&? Real D5PAddress
DSPAddress error out
error in (no error) s
Size (1)
RI Nw {F' }w} i
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net _Open_Next_Avail_Board.vi
e Dataln: Data words to be written to Flash memory. Dataln must be wired, even for a
read, to specify the data type to be transferred.
e MemSpace: This control is not used. It is only presented for compatibility with other
transfer Vis.
e DSPAddress: Physical base DSP address for the transfer.
e Size: Only used for reads of array types, represents the size (in number of items of

the requested data type) of the array to be read from DSP memory. For Writes, the whole
contents of Dataln are written to DSP memory, regardless of Size. When Size is wired, the data
can only be transferred as arrays, not scalars.

e R/~W: Boolean indicating the direction of transfer (true->read, false->write).

e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running Vi.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e DataOut: Data read from Flash memory.

e Real DSPAddress: Actual address where the transfer took place. This address takes into account
the effect of Offset.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

SR3_Ethernet - User’s Manual 14

—[Soft BT}

4.3.2.5 SR3_Net Flash_Config_NoDialog

This VI automatically programs a DSP file and/or an FPGA file into Flash. It does not require user
interaction, but presents its front-panel to the user during the programming so that the operation can be
monitored. The VI presents error and/or completion dialogs.

BoardRef "E:"— dupBoardRef
DSP File In ~ ,5‘.’ . ™ Success
FPGA File In ﬂ HET E;Lnad_Attempted
error in (no error) error out
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 _Net_Open_Next_Avail_Board.vi
e DSPFileln: File path of the DSP file to be programmed in Flash. No file is

programmed if the path is empty. New in SignalRanger_mk3, File Path can point to a firmware
container VI, as well as an actual COFF (.out) file.

e FPGAFileln: File path of the FPGA file to be programmed in Flash. No file is programmed if
the path is empty. New in SignalRanger_mk3, File Path can point to a firmware container VI, as
well as an actual FPGA (.rbt) file.

e Errorin: LabVIEW instrument-style error cluster. Contains error number and
description of the previously running VI.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

e Success: Returns at true if the load succeeded. Otherwise returns at false.

e Load Attempted: Always returns at true. This boolean is provided for compatibility reasons.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2.6 SR3_Net Flash_Config_Dialog

This VI programs a DSP file and/or an FPGA file into Flash. Contrary to SR3_Flash_Config_NoDialog
the VI is interactive. It prompts the user for the input files and the action (Write or Clear). The VI
presents error and/or completion dialogs. New in SignalRanger_mk3, The DSP and FPGA files can be
contained in firmware container VIs, as well as actual .out or .rbt files.

Boardref _E" dupBoardref
error in (no error) HET error out
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 _Net_Open_Next_Avail_Board.vi
e FErrorin: LabVIEW instrument-style error cluster. Contains error number and

description of the previously running VI.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next_Avail_Board.vi Use this
output to propagate the reference number to other Vis.

SR3_Ethernet - User’s Manual 15

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

4.3.2.7 SR3_Flash_Check_Dialog

This VI checks the Flash contents against a DSP file and/or an FPGA file. The VI is interactive. It
prompts the user for the input files and the action (Check or Cancel). The VI presents error and/or
completion dialogs. New in SignalRanger_mk3, The DSP and FPGA files can be contained in firmware
container VIs, as well as actual .out or .rbt files.

BoardRef _E"j dupBoardRef
errar in {no error) ? wer error out
Controls:
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3 Net Open_Next_Avail_Board.vi
e Errorin: LabVIEW instrument-style error cluster. Contains error number and

description of the previously running VI.

Indicators:

e DupBoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_Net_Open_Next Avail _Board.vi Use this
output to propagate the reference number to other Vis.

e Errorout: LabVIEW instrument-style error cluster. Contains error number and
description.

5 C/C++ Interface

The C/C++ interface is provided in the form of a DLL nhamed SRm3_HL.dIl. This interface has been
designed in a mirror image of the LabVIEW interface. The documentation of the LabVIEW interface to a
large extent also applies to the C/C++ interface.

The SR3_Net functions of the SRm3_HL.dIl interface are similar to those of the native USB interface.
They are recognized by the _Net in their name. Operation of these functions requires that the DSP user
code include the Net_Kernel library. See section on DSP support code below for details.

Note: Even though they are similar in form and function, the SR3_Net interface and the SR3_Base
interface are not compatible. Trying to call any of the SR3_Net interface functions using a BoardRef
control from the SR3_Base interface will create a run-time error. So will the reverse.

This interface has been designed with C/C++ development in mind, and has only been tested on
version 2005 of Microsoft's Visual Studio. However, it may be possible to use it with other
development environments allowing the use of DLLs.

To work at run-time, this DLL requires that the following files, be in the same directory as the user
application that uses it:

e SRm3 HL.dI The main interface DLL
Furthermore, the LabView 2009 run-time engine must be installed on the computer that needs to

use the DLL. The LabView 2009 run-time engine is installed automatically during the
SighalRangerMk3 software installation. However, if the user wants to deploy an application

SR3_Ethernet - User’s Manual 16

—[Soft BT}

using the C/C++ interface, which is required to run on computers other than those on which it was
developed, the LabView 2009 run-time engine should be installed separately on those computers.
A run-time engine installer is available for free from the National Instruments web site
WWW.hi.com.

An example is provided, which covers the development of code in Visual Studio. This example is
found in C:\Program Files\SignalRanger_mk3\Visual_Studio_Code_Example.

5.1 Execution Timing and Thread Management

Two functions of the SRm3_HL DLL accessing the same SignalRanger mk3 DSP board cannot
execute concurrently. The first function must complete before the second one can be called. Care
should be taken in multi-threaded environments to ensure that separate functions of the DLL do not run
at the same time (in separate threads). The simplest method is to ensure that all calls to the DLL
functions are done in the same thread. However, functions of the interface accessing different boards
can be called concurrently.

All the functions of SRm3_HL DLL are blocking. They do not return until the requested action has been
performed on the board.

5.2 Calling Conventions
The functions are called using the C calling conventions.

All the functions return a USB_Error_Code in the form of a 32-bit signed integer. This error code is zero
if no error occurred.

Whenever a function must return an array or string, the corresponding space (of sufficient size) must be
allocated by the caller, and a pointer to this space is passed to the function. In addition the size of the
element that has been allocated by the caller is passed to the function. The size argument associated
with the array or string normally follows the array or string in the argument line.

5.3 Building a Project Using Visual Studio
To build a project using Visual Studio the following guidelines should be followed. An example is
provided to accelerate the learning curve (see last section of the current chapter).

e If the project s linked statically to the SRm3_HL.lib library, it must be loaded using the
DELAYLOAD function of Visual C++. To use DELAYLOAD, add delayimp.lib to the project (in
Visual Studio 2005, it can be found in Program Files\Microsoft Visual Studio 8\VC\lib\); in Project
Properties, under Linker\Command Line\Additional Options, add the command
/DELAYLOAD:SRm3_HL.dIl.

e Alternately, the DLL may be loaded dynamically using LoadLibrary and DLL functions must be
called using GetProcAddress. Do not link statically with the SRm3_HL.lib library without using the
DELAYLOAD function.

e Add #include "SRm3_HL.h" in the main.

e If using the DELAYLOAD function to link statically to the SRm3_HL.lib library, add SRm3_HL.lib to
the project.

e The following files must be placed in the folder containing the project sources:

cvilvsb.h

extcode.h
fundtypes.h
hosttype.h
ILVDatalnterface.h
ILVTypelnterface.h
platdefines.h

SR3_Ethernet - User’s Manual 17

http://www.ni.com/

e SRm3_HLh

All these files are part of the provided example.

5.4 Exported Interface Functions

5.4.1 SR3 DLL Net Open_Next Avail Board

54.1.1 Prototype

int32_t SR3 _DLL_Net Open_Next_Avail_Board(char Identifier]], char IP_Address[], int32_t
timeout_ms, int32_t *BoardRef, char DSP_Firmware_Name][], int32_t DSP_Firmware_Name_Size,
char FPGA_Logic_Name[], int32_t FPGA_Logic_Name_Size)

5.4.1.2 Description
This function performs the following operations:

e Tries to find an available DSP board with the selected identifier or IP address

e [fitfinds one, creates an entry in the Global Board Net Information Structure.

e IfaDSP firmware is detected in Flash (code has been loaded and started as part of the power-up
sequence), loads the corresponding file name and symbol table from Flash.

e Places the symbol table of the kernel in the Global Board Net Information Structure.

5.4.1.3 Inputs

e Identifier: This is a string used to identify the hardware type of board to open. This
argument must be initialized with the correct symbolic name for the board. There are several
hardware variations of the SignalRanger_mk3 architecture, including custom implementations. For
instance the standard SignalRanger_mk3 board has an identifier equal to SRM3.

e |P-Address: If the IP address is not empty, then the function tries to open a board at the
specified IP address, and verifies that it is the proper platform by checking it against the Identifier.
If the IP-Address is empty, then the VI tries to open the first board on the network that has the
proper identifier.

e Timeout ms If the TCP connection to the specified board does not occur within the
specified time-limit, the function returns with an error.
e DSP_Firmware_Name_Size A string of sufficient length must be allocated for the function

to return the name of the DSP file present in Flash. DSP_Firmware_Name_Size must be set to
the actual size allocated for the string.

e FPGA Logic_Name_Size A string of sufficient length must be allocated for the function
to return the name of the FPGA file present in Flash. FPGA_Logic Name_Size must be set to the
actual size allocated for the string.

5.4.1.4 Outputs

e BoardRef This is a number pointing to the entry corresponding to the
board in the in Global Board Information Structure. The interface can manage a multitude of
boards connected to the same PC. Each one has a corresponding BoardRef number allocated to
it when it is opened. All other interface functions use this number to access the proper board.

e DSP_Firmware_Name[] This string contains the name of the DSP firmware file that is
present in Flash. The string is empty if the Flash does not contain any firmware. The string is also
empty if the ForceReset control is true.

e FPGA_Logic_Namel] This string contains the name of the FPGA logic file that is
present in Flash. The string is empty if the Flash does not contain any FPGA logic. The string is
also empty if the ForceReset control is true.

SR3_Ethernet - User’s Manual 18

—[Soft BT}

Note: The handle that the interface provides to access the board is exclusive. This means that only
one application and one host at a time can open and manage a board. A consequence of this is that a
board cannot be opened twice. A board that has already been opened using the
SR3 DLL Net Open Next Avail Board() function cannot be opened again until it is properly closed
using the SR3_ DLL_Net Close_BoardNb function. This is especially a concern when the application
managing the board is closed under abnormal conditions. If the application is closed without properly
closing the board. The next execution of the application may fail to find and open the board, simply
because the corresponding driver instance is still open. In such a case simply disconnect and
reconnect the board to force the PC to re-enumerate the board.

5.4.2 SR3 DLL Net Close BoardNb

5.4.2.1 Prototype
int32_t SR3_DLL_Net_Close BoardNb(int32_t BoardRef)

5.4.2.2 Description

This function Closes the TCP connection used to access the board, and frees the corresponding
resources in the Global Board Information Structure. It is used after the last access to the board has
been made, to release resources that are not used anymore.

5.4.2.3 Inputs
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net Open_Next Avail_Board()

5.4.2.4 Outputs
None

5.4.3 SR3 DLL_Net Bulk Move Offset U8

5.4.3.1 Prototype

int32_t SR3_DLL_Net Bulk_Move_ Offset_U8(int32_t BoardRef, uintl6_t ReadWrite, char Symbol[],
uint32_t DSPAddress, uintl6_t MemSpace, uint32_t Offset, uint8_t Data]], int32_t Size)

5.4.3.2 Description
This function reads or writes an unlimited number of bytes to/from the address space of the DSP, using
the Net_Kernel.

The DSP address and memory space of the transfer are specified as follows:
e If Symbol is not empty, and the symbol is represented in the symbol table, then the transfer occurs

at the address and memory space corresponding to Symbol. Note that Symbol must represent a
valid address. Also, the DSP COFF file must be linked with the usual page number convention:

e Program space = page number 0
e Data space = page number 1
e |O space = page number 2

e All other page numbers are accessed as data space.

e If Symbol is empty, then DSPAddress is used as the byte-address for the transfer, and
MemSpace is used as the memory space.

¢ Note that DSPAddress may be required to be aligned to the proper width, depending on the
specific platform.

e The value of Offset is added to DSPAddress. This functionality is useful to access individual
members of structures or arrays on the DSP. Note that the value of Offset is always counted in
bytes.

SR3_Ethernet - User’s Manual 19

Note: The Net Kernel must be loaded and executing for this Vi to be functional.

5.4.3.2.1 Notes on Transfer Atomicity

Contrary to the native USB kernel, the Net Kernel performs all its transfers synchronously to the
execution of the foreground DSP user code. A consequence of this is that a host-initiated transfer
cannot cut in the middle of a data operation executed in the foreground on the DSP. Symmetrically, a
foreground DSP operation cannot cut in the middle of a host-initiated data transfer.

This remark does not include DSP code that executes under interrupts. A host-initiated transfer cannot
cut in the middle of a data operation on the DSP executed in an interrupt service routine. However a
data operation executed on the DSP in an interrupt service routine can cut in the middle of a host-
initiated transfer.

In short, the integrity of the wide data transferred to and from the DSP is maintained when transferring
data that is not processed under interrupts. The only case when the developer should be careful is
when transferring data that is processed (written) by the DSP code under interrupts. In this case there
is always the possibility of the interrupt processing cutting in the middle of the host-initiated transfer, and
writing over parts of the data being transferred. This is especially a concern when the data transferred
is wider than the byte. In this case, portions of a word can be overwritten by the DSP interrupt while the
others are not, corrupting the wider transferred word. When this is a concern we recommend the use of
a secondary buffer and semaphores to sequence the transfer.

5.4.3.3 Inputs

e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net Open_Next Avail_Board()

e ReadWrite: 1->Read, 0->Write.

e Symbol: Character string of the symbol to be accessed. If Symbol is empty,
DSPAddress and MemSpace are used.

e DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used if
Symbol is empty.

e MemSpace: Memory space for the exchange (data, program or 10). MemSpace is only
used if Symbol is empty.

e Offset: Represents the offset of the data to be accessed, from the base address

indicated by Symbol or DSPAddress. The actual access address is calculated as the sum of the
base address and the offset. Offset is useful to access individual members of a structure, or an

array.
e Data: Array of bytes to be written to or read from DSP memory.
e Size: Represents the number of bytes to transfer. For a read or a write the Data

array allocated must be larger or equal to Size.

5.4.3.4 Outputs
e Data: Array of bytes written to or read from DSP memory. The Data array passed in
argument to the function must be larger or equal to Size.

SR3_Ethernet - User’s Manual 20

—[Soft BT}

5.4.4 SR3 DLL_Net K_Exec
5.4.4.1 Prototype
int32_t SR3_DLL_Net_K_Exec(int32_t BoardRef, char Symbol[], uint32_t DSPAddress)

5.4.4.2 Description

This function forces execution of the DSP code to branch to a specified address, passed in argument. If
Symbol is not empty, the function searches in the symbol table for the address corresponding to the
symbolic label. If the symbol is not found, an error is generated. If Symbol is an empty string, the value
passed in DSPAddress is used as the entry point.

Contrary to the native USB interface there is no need for an acknowledge in the user DSP function. A
USB acknowledge in the function will not cause any problems however. In other words, a DSP function
called by a native USB SR3_DLL_K_Exec can also be called by SR3_Net K_Exec.

Note: Contrary to the native USB kernel, the Net_Kernel cannot be reentered. 2 conditions must be
observed for SR3_Net_K_Exec to work properly:

e The called function must return. Calling a function that does not return will stop the operation of the
Net Kernel

e The called function must execute in a timely fashion. The kernel is stopped, and the host blocks
until the called function returns.

5.4.4.3 Inputs

e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net Open_Next Avail_Board()

e Symbol: Character string of the symbol to be accessed. If Symbol is empty,
DSPAddress is used.

e DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used if

Symbol is empty.

5.4.4.4 Outputs
None

5.45 SR3 DLL Net Flash_InitFlash

5.4.5.1 Prototype
int32_t SR3_DLL_Net_Flash_InitFlash(int32_t BoardRef, double *FlashSize)

5.4.5.2 Description

This function places the DSP in the Park state. All previously running DSP code is aborted. Contrary to
the native USB kernel, the Flash-support code is already resident in the Net_Kernel and does not need
to be loaded.

5.4.5.3 Inputs
e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net Open_Next Avail_Board()

5.4.5.4 Outputs
e FlashSize: This argument returns the size of the Flash. The flash is not detected, the
function returns a constant value.

SR3_Ethernet - User’s Manual 21

—[Soft BT}

5.4.6 SR3 DLL Net Flash EraseFlash
5.4.6.1 Prototype
int32_t SR3_DLL_Net_Flash_EraseFlash(int32_t BoardRef, uint32_t StartingAddress, uint32_t Size)

5.4.6.2 Description

This function erases the required number of 16-bit words from the Flash, starting at the selected
address. The erasure proceeds in sectors, therefore more words may be erased that are actually
selected. For instance, if the starting address is not the first word of a sector, words in the same sector
before the starting address will be erased. Similarly, if the last word selected for erasure is not the last
word of a sector, additional words will be erased, up to the end of the last selected sector. The erasure
is such that the selected words, including the starting address, are always erased.

Note: On SignalRanger_mk2_Next Generation the sector size is 32 kwords. On SignalRanger_mk3
the sector size is 64 kwords (128 kBytes).

Note: Erasure should only be attempted in the sections of the memory map that contain Flash.
Erasure attempts outside the Flash will fail.

5.4.6.3 Inputs

e BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net _Open_Next_Avail_Board()

e Starting Address: Address of the first word to be erased.

e Size: Number of words to be erased.

5.4.6.4 Outputs
None

5.4.7 SR3 DLL_Net Flash_FlashMove U8

5.4.7.1 Prototype

int32_t SR3_DLL_Net_Flash_FlashMove U8(int32_t BoardRef, uintl6_t ReadWrite, char Symbolf],
uint32_t DSPAddress, uint8_t Data]], int32_t Size)

5.4.7.2 Description

This function reads or writes an unlimited number of bytes to/from the Flash memory. Note that if only
Flash memory reads are required the function SR3_DLL_Net Bulk_Move Offset() should be used
instead, since it does not require that the Flash be placed in the Park state.

An attempt to write outside of the Flash memory will result in failure.

The write process can change ones into zeros, but not change zeros back into ones. If a write operation
is attempted that should result in a zero turning back into a one, then it results in failure. Normally an
erasure should be performed prior to the write, so that all the bits of the selected write zone are turned
back into ones.

Note: Contrary to the SignalRanger_mk2_NG generation, incremental programming (programming
the same address multiple times) is permitted on SignalRanger_mk3. Each programming operation
cannot set individual bits from 0 to 1. This can only be done by an erasure cycle on a whole sector.
However the programming operations can reset individual bits from 1 to 0 at any time without
intervening erasure.

SR3_Ethernet - User’s Manual 22

—[Soft BT}

The Flash’s internal representation is 16-bit words. In case of a write of an odd number of bytes an
additional byte is appended to complete the write to the next 16-bit boundary. The appended byte is set
to FFy.

5.4.7.3 Inputs

BoardRef: This is a number pointing to the entry corresponding to the board in the
Global Board Information Structure. It is created by SR3_DLL_Net Open_Next Avail_Board()
ReadWrite: 1->Read, 0->Write.

Symbol: Character string of the symbol to be accessed. If Symbol is empty,
DSPAddress is used.

DSPAddress: Physical base DSP address for the exchange. DSPAddress is only used if
Symbol is empty.

Data: Array of bytes to be read from or written to Flash.

Size: Represents the number of bytes to transfer. For a read or a write the Data

array allocated must be larger or equal to Size.

5.4.7.4 Outputs

Data: Array of bytes read from or written to Flash. The Data array passed in
argument to the function must be larger or equal to Size.

6 DSP Support Code

To support network connectivity the user DSP code must include the following additions:

The library Net_Kernel_xxx.lib must be linked with the user DSP code. This library is platform-
dependant. There is one version of the library for each variant of the SignalRanger_mk3 platform.
For instance the library for the standard variant of the SignalRanger_mk3 is Net_Kernel_SRM3.lib.
The function InitStackIP() must be called once at the beginning of the code, before any other call
to network functions.

The function StackTaskMain() must be called at regular intervals. This function manages all the
operations of the Net_Kernel. The rate at which this function is called has an impact on the
transfer performance. Generally this function is called from within the main application loop.

6.1 Operation Of The Net Kernel

All the tasks performed by the Net_Kernel are executed within the function StackTaskMain(). This
function performs all the tasks necessary to manage the network connection at every protocol level.
The execution time of this function is highly variable, and depends a great deal upon the state of the
network connection and the data coming in through it.

The function StackTaskMain() is a large finite-state machine and only performs the operations required
at each state. This function never blocks. It takes care automatically of all the network management
tasks, including Link management, DHCP, TCP-Open...etc. In addition, this function manages the
execution of Net_Kernel tasks at the highest level.

Contrary to the native USB interface, the network interface only operates by polling. If StackTaskMain()
is not called, the interface stops working. A corollary of this is that all the operations of the Net_Kernel
are executed synchronously from within StackTaskMain(). No operation can be executed
asynchronously of the user code as in the case of the native USB interface.

All communications between the host and the SignalRanger_mk3 board follow a master-slave protocol
called Net_DDCI that is constructed on top of TCP. For all the transactions the Net_DDCI protocol
follows the sequence below:

SR3_Ethernet - User’s Manual 23

—[Soft BT}

Before any transaction can take place, the host initiates a TCP connection to the board at socket No
50000. This is done by the SR3 Net Open_Next Avail Board VI. When no more transactions are
required the host closes the TCP connection. This is done by the SR3_Net_Close_ BoardNb VI.

For each transaction:

e The host (client) sends a header to the SignalRanger_mk3 board. This header defines the
operation and various parameters (see below).

e Ifthe transaction is a write, the host sends all the bytes to write to the SignalRanger_mk3 board. If
the transaction is a read the SignalRanger_mk3 board sends all the requested bytes back to the
host.

¢ Finally the SignalRanger_mk3 board sends an acknowledge to the host. The acknowledge
indicates that the operation is complete. The acknowledge is defined on one byte. It has always
the same value (0x32)

Note: For a write the bytes sent to the board and the header can be merged into a single transfer.

Note: Contrary to the native USB interface, the Net_DDCI interface does not require the user code to
send an acknowledge to signal completion of a user function. Because user functions cannot be
launched asynchronously (they are launched from within StackTaskMain()) The acknowledge is send
automatically when the user function is entered. A USB acknowledge can be present in the function
without problems.

The transaction header is constructed as follows:

Field Size

(bytes)

TaskCode Defines the type of transaction (see below for list of Task Codes)

Address 4 This is a byte address. It has different meanings depending on the
transaction. It is transmitted LSB-first

Length 4 This is a byte length It has different meanings depending on the transaction.
It is transmitted LSB-first

There are 6 types of transactions:

Transaction TaskCode | Function

Name

KNet Read Performs a read from the DSP address space. Address represents
the transfer address in the DSP space. Length represents the

number of bytes to transfer.

KNet_Write 2 Performs a write to the DSP address space. Address represents the
transfer address in the DSP space. Length represents the number of
bytes to transfer.

SR3_Ethernet - User’s Manual 24

—[Soft BT}

KNet_Exec

3

Calls the DSP function at the address specified by Address. Length
is irrelevant.

KNet_Park

Enters a section of code where all interrupts are disabled, and the
only task is managing the network connection. This is important in
some situations to avoid interference between critical tasks and the
user code that may have been executing prior to the park. For
instance this transaction is executed before writing to the Flash. The
only way to exit this state is to branch to the beginning of the kernel
to reload the DSP firmware present in Flash and execute it.

KNet_FlashWrite

Performs a programming of the Flash. Address represents the
transfer address in the Flash space. Length represents the number
of bytes to transfer. Length must always be an even number.

KNet_Identity

Returns a 16-byte string that represents the platform type. The string
is NULL terminated. In addition the first space indicates the end of
the useful part of the string.

KNet_FlashErase

Performs an erasure of the Flash. Address represents the first byte
to erase in the Flash space. Length represents the number of bytes
to erase. Erasure can take a long time (up to 1s per sector) so the
host code must be prepared to wait adequately for the acknowledge.

6.2 Resources Used By The Net Kernel

Contrary to the native USB kernel, the Net_Kernel uses large amounts of CPU execution time and
memory. This is why it does not run under interrupts. Even running in the foreground, the developer
should be aware of typical execution times to understand and avoid interference with other higher
priority code. The execution time of the StackTask() function is typically very short, with large peaks
when processing occurs.

6.2.1 Code Size

Type Size
Program Code 44 672 bytes
Initialized Data 1172 bytes
Uninitialized Data | 929 bytes

6.2.2 Execution Time

Operation/Condition

Peak Time | Typical Time

SR3_Ethernet - User’s Manual

25

—[Soft BT}

InitStackIP() 4ms 4ms
StackTask() 19s 16 ps
Link establishment, DHCP discover...etc.

StackTask() 250 us 16 ps
No specific communication

StackTask() 2ms 17 ps
Net_Debugger connection establishment

StackTask() 500 ps 16 ps
Net_Debugger disconnection

StackTask() 340 ps 16 ps
1-byte read or write

StackTask() 2ms 16 us
1000-byte read or write

StackTask() 14 ms 16 us

10k-byte read or write

SR3_Ethernet - User’s Manual

26

	1 Main Features
	2 Transfer Performance
	3 LED Indicators
	4 LabVIEW Interface
	4.1 Preliminary Remarks
	4.2 Opening the Target
	4.2.1 Loading and Executing Code Dynamically

	4.3 Network Interface Vis
	4.3.1 Core Interface VIs
	4.3.1.1 SR3_Net_Open_Next_Avail_Board

	Controls:
	Indicators:
	4.3.1.2 SR3_Net_Close_BoardNb

	Controls:
	Indicators:
	4.3.1.3 SR3_Net_Bulk_Move_Offset
	4.3.1.3.1 Notes on Transfer Atomicity

	Controls:
	Indicators:
	4.3.1.4 SR3_Net_K_Exec

	Controls:
	Indicators:
	4.3.2 Flash Support VIs
	4.3.2.1 SR3_Net_Flash_InitFlash

	Controls:
	Indicators:
	4.3.2.2 SR3_Net_Reload_from_Flash

	Controls:
	Indicators:
	4.3.2.3 SR3_Net_Flash_EraseFlash

	Controls:
	Indicators:
	4.3.2.4 SR3_Net_Flash_FlashMove

	Controls:
	Indicators:
	4.3.2.5 SR3_Net_Flash_Config_NoDialog

	Controls:
	Indicators:
	4.3.2.6 SR3_Net_Flash_Config_Dialog

	Controls:
	Indicators:
	4.3.2.7 SR3_Flash_Check_Dialog

	Controls:
	Indicators:
	5 C/C++ Interface
	5.1 Execution Timing and Thread Management
	5.2 Calling Conventions
	5.3 Building a Project Using Visual Studio
	5.4 Exported Interface Functions
	5.4.1 SR3_DLL_Net_Open_Next_Avail_Board
	5.4.1.1 Prototype
	5.4.1.2 Description
	5.4.1.3 Inputs
	5.4.1.4 Outputs

	5.4.2 SR3_DLL_Net_Close_BoardNb
	5.4.2.1 Prototype
	5.4.2.2 Description
	5.4.2.3 Inputs
	5.4.2.4 Outputs

	5.4.3 SR3_DLL_Net_Bulk_Move_Offset_U8
	5.4.3.1 Prototype
	5.4.3.2 Description
	5.4.3.2.1 Notes on Transfer Atomicity

	5.4.3.3 Inputs
	5.4.3.4 Outputs

	5.4.4 SR3_DLL_Net_K_Exec
	5.4.4.1 Prototype
	5.4.4.2 Description
	5.4.4.3 Inputs
	5.4.4.4 Outputs

	5.4.5 SR3_DLL_Net_Flash_InitFlash
	5.4.5.1 Prototype
	5.4.5.2 Description
	5.4.5.3 Inputs
	5.4.5.4 Outputs

	5.4.6 SR3_DLL_Net_Flash_EraseFlash
	5.4.6.1 Prototype
	5.4.6.2 Description
	5.4.6.3 Inputs
	5.4.6.4 Outputs

	5.4.7 SR3_DLL_Net_Flash_FlashMove_U8
	5.4.7.1 Prototype
	5.4.7.2 Description
	5.4.7.3 Inputs
	5.4.7.4 Outputs

	6 DSP Support Code
	6.1 Operation Of The Net_Kernel
	6.2 Resources Used By The Net_Kernel
	6.2.1 Code Size
	6.2.2 Execution Time

